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ABSTRACT 

Geochemical reaction path modeling is useful for rapidly assessing the extent of 
water-aqueous-gas interactions both in natural systems and in industrial processes.  Modeling of 
some systems, such as those at low temperature with relatively high hydrologic flow rates, or 
those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account 
for the relatively slow kinetics of mineral-gas-water interactions.  We have therefore compiled 
parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including 
phases from all the major classes of silicates, most carbonates, and many other non-silicates. The 
compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log 
moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 °C, and pH near neutral. 
These data have been added to a computer code that simulates an infinitely well-stirred batch 
reactor, allowing computation of mass transfer as a function of time.  Actual equilibration rates 
are expected to be much slower than those predicted by the selected computer code, primarily 
because actual geochemical processes commonly involve flow through porous or fractured 
media, wherein the development of concentration gradients in the aqueous phase near mineral 
surfaces, which results in decreased absolute chemical affinity and slower reaction rates.  Further 
differences between observed and computed reaction rates may occur because of variables 
beyond the scope of most geochemical simulators, such as variation in grain size, aquifer 
heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary 
minerals that may lead to decreased porosity and clogged pore throats. 
 
 

1.  INTRODUCTION 

Equilibrium-based geochemical modeling is a method for predicting the identity and 
extent of chemical reactions in both geological and industrial processes.  The method usually 
entails computer-aided simultaneous solution of a system of non-linear equations.  Given a 
pressure (P), a temperature (T), and a bulk chemical composition (x), a geochemical modeling 
program or simulator computes the equilibrium distribution of the chemical components among 
gaseous, aqueous, or mineral phases.  The variables P, T, or x can be changed incrementally over 
the course of a simulation with equilibrium recomputed at each step, thereby defining a reaction 
path.  Some geochemical simulators, such as GAMSPATH (for a description of GAMSPATH, 
and comparison of GAMSPATH to other geochemical simulators, see Perkins et al., 1997), 
require the presence of an aqueous fluid phase and are well suited to simulation of systems at 
shallow to moderate depth in the Earth’s crust, or wherever there is open space that is saturated 
with water, such as pores or fractures.  Water is the medium that allows mass transfer by 
diffusion or fluid flow, and redistribution of the components via chemical reaction among the 
gaseous and various mineral phases, and species in the aqueous phase.  Considered herein is the 
quantification of the rates at which these reactions occur. 

Local non-redox chemical equilibria among fluids, gases, and alteration minerals is a 
valid assumption in many volcanic-hosted hydrothermal systems (Arnórsson, 1983; Arnórsson et 
al., 1983; Giggenbach, 1980; Giggenbach, 1981; Pang and Reed, 1998; Reed, 1982; Reed, 1997; 
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Reed, 1998; Reed and Spycher, 1984), and in many sedimentary systems with low fluid flow 
rates at temperatures as low as 75-80 °C (Bazin et al., 1997a; Bazin et al., 1997b; Palandri and 
Reed, 2001).  In other systems, equilibrium with an alteration mineral assemblage cannot always 
be assumed, especially in systems where low temperature leads to slow rates of chemical 
reaction, or if there exists a perturbation away from equilibrium, e.g. relatively fast hydrologic 
flow rates from one lithologic regime into another.  It is important to recognize that equilibrium 
between aqueous fluid and primary minerals is commonly lacking, and in some cases cannot be 
attained, e.g. anorthite or forsterite at T and P of H2O liquid-vapor saturation.  Further, 
equilibrium between aqueous fluid and secondary minerals containing redox elements such as Fe 
and S generally requires higher temperatures than for those minerals containing only non-redox 
elements (other than oxygen). 

For many geologic systems it is desirable to know the length of time required for a 
system to equilibrate with respect to alteration minerals, and perhaps more importantly, the rate 
of dissolution of primary minerals.  An illustrative example is the geologic sequestration of 
carbon dioxide (CO2) from anthropogenic sources, such as fossil fuel-fired electrical power 
plants, is injected into depleted oil or gas reservoirs, coal seams, or deep saline aquifers.  As a 
result of CO2 injection, these systems are perturbed far from equilibrium, and will require some 
length of time to re-equilibrate with alteration minerals, due to the relatively slow kinetics of 
mineral-CO2-water interactions at aquifer temperatures and pressures.  While dissolution of 
supercritical CO2 into aquifer fluids is expected to be kinetically rapid, the rate at which 
dissolved CO2 reacts with primary minerals, and the rates at which secondary minerals 
precipitate are much slower (Gunter et al., 1997). 

To model systems where the time dependence of geochemical reactions is of critical 
importance, there is a need to quantify rates of mineral dissolution and precipitation, and to a 
lesser extent, of aqueous speciation.  Therefore, we compiled directly or determined using 
regression and curve-fitting, the parameters conforming to a general, Arrhenius-type rate 
equation for over 70 minerals, including most of the rock-forming minerals.  For a few minerals, 
we have also compiled more specialized rate equations and parameters, where some workers 
have clearly shown that those equations provide a better fit to experimental data, e.g. quartz 
(Dove, 1994; Dove, 1999; Dove and Nix, 1997) and barite (Dove and Czank, 1995).  The rate 
parameters compiled herein are for surface controlled reactions at conditions that are far from 
equilibrium, rather than diffusion controlled reactions.  This compilation does not contain rate 
parameters for aqueous speciation. 
 

2. METHODS 

2.1 Rate Equations 

Any rate equation that is to be used in geochemical computer modeling must contain only 
parameters that are available during program execution as variables or constants.  The general 
rate equation and rate parameters compiled herein are compiled specifically for the program 
GAMSPATH (Perkins et al., 1997), which uses a general, semi-empirical rate equation to which 
experimental rate data for many minerals can be reasonably well fit.  A general form of the 
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equation for a single reaction mechanism modified from Lasaga and co-workers (1984; 1995; 
1998) is given by 
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is for one of the reaction mechanisms for pyrite (McKibben and Barnes, 1986), discussed further, 
below.  Positive and negative exponents denote catalysts and inhibitors respectively, except in 
the case of hydroxide-catalyzed mechanisms (as above in eqn. (3b)), which are quantified in 
terms of aH+ raised to a negative exponent (recall that for aqueous fluids, aH+aOH- = 10-14) t
simplify calculations.  It is important to recognize that eqn. (3b) becomes problem
z i

r if ai is zero and ni is negative, because a numer
a
and Sposito, 1992; Furrer and Stumm, 1986; Gautier et al., 1994; Kline and Fogler, 1981; 
Pokrovsky and Schott, 1999; Stillings and Brantley, 1995), which have the form 
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pression is an example is an isotherm of the Langmuir type for quartz (Dove, 1994; Dove
1999; Dove and Nix, 1997), where KNa+ is the adsorption coefficient for Na+, and kad is a 
constant factor by which the overall rate constant in adjusted.  The sign of kad is positive for
catalysts and negative for inhibitors.  GAMSPATH currently does not implement adsorption 
isotherms, and uses the form as in eqns. (3a) and (3b). 

The dimensionless term g(∆Gr) is a function of the chemical affinity to account for 
slowing of reaction rates as equilibrium is approached, and may be expressed as (Lasaga, 19
Lasaga, 1998; Lasaga et al., 1994; Oelkers et al., 1994): 
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In general, the most well-studied mechanisms are those in pure H2O (neutral pH), and those 
catalyzed by H+ (acid) and OH- (base).  For many minerals, the full equation includes a term for 
each of these three mechanisms: 
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ica from fluids that are grossly supersaturated with 
spect to quartz. Further, quartz precipitation is prohibitively slow at low degrees of super-
turation.  Therefore, we use the principle of microscopic reversibility (Lasaga, 1998): 

--catalyzed mechanism in eqn. (7) uses the activity of H+ raised to a reaction order with
negative sign, to simplify data reduction.  Additional terms are added to or removed from eqn. 
(7) to account for other mechanisms or the absence of data.  Other mechanisms include tho
catalyzed by HCO3

-, (especially the carbonate minerals, which are quantified in terms of either 
HCO3

- or PCO2), Fe3+ (py 2
talyzed mechanism is apparently slowed by presence of Fe3+.  This effect is accounted fo

by substituting a term in the form of eqn. (3b) for the H+ activity and reaction order in the third
term in eqn. (7).  It should be recognized that although the pyrite dissolution rates were measured 
at low pH, the reaction order with respect to H+ is negative, i.e. the reaction is OH--catalyzed. 

Precipitation rate data do not exist for most minerals, because in mineral precipitation 
experiments, undesired metastable reaction products usually precipitate instead of the desired
mineral, especially far from equilibrium at high degrees of super-saturation.  One example of this
behavior is the precipitation of amorphous sil
re
sa
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tation to proceed (Lebrón and Suárez, 1996; Nordeng and Sibley, 1994; Normand et al., 
2002; Reddy, 1986; Schoonen and Barnes, 1991b; Shiraki and Brantley, 1995; Sibley et al., 
1987; Steefel and Van Cappellen, 1990); in some cases this can be substantial, as for siderite 
(Greenberg and Tomson, 1992; Jensen et al., 2002).  Nucleation may be either homogeneous, 
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where nucleation occurs spontaneously in a liquid phase, or heterogeneous, where nucleation of 
a new phase occurs on the surface of a pre-existing solid phase (Lasaga, 1998).  For most 
minerals, the degree of super-saturation required for homogeneous or heterogeneous nucleation 
has not

70), 
, Lasaga 

et al. (1994), Oelkers et al. (1994), Petrovich (1981a), Petrovich (1981b), Schoonen et al. (1998), 
S l and Van Cappellen (1990), Sverdrup (1990), Talman and 

esbitt (1988), Tuncay et al. (2002), Wieland et al. (1988), Wood and Walther (1983), Xiao and 

 an example because it’s rate data clearly conform to eqn. (6) in one 
of its simplified forms, eqn. (7), where rates are controlled by H+ and OH- catalysis and 
temperature.  The magnesite example illustrates some problems that may arise if the ability to 
account for adsorption isotherms is absent: saturation of a m +

and the affects of Na+, which may catalyze or i
The variables that have the greatest effect on reaction rates are temperature and pH, and 

ys reported in by experimentalists.  Many minerals 
 plots) between dissolution rates and pH, roughly in 

p  a given temperature, rates are generally slowest at and near 
as a net charge of zero, usually within one or two pH units of 

ed by H+, and at high pH, rates 

An example of this behavior is shown in Figure 1 for the mineral albite; the data points at 
100 to 300 °C are from Hellman (1994a), and at 25 °C, fr
curves in Figure 1 are obtained from the data (open symb e 
itting (gray curves) and unweighted piecewise linear regression (black curves).  Non-linear 

curve f

 been quantified. 
For further general discussions of mineral dissolution and precipitation, the reader may 

wish to consult Anbeek (1993), Bertrand et al. (1994), Brady and Walther (1989), Casey and 
Sposito (1992), Fleer and Johnston (1986), Gallup (1998), Gérard et al. (1998), Helgeson (19
Jeschke and Dreybrodt (2002a), Kline and Fogler (1981), Lasaga (1984), Lasaga (1995)

teefel and Lasaga (1992), Steefe
N
Lasaga (1994), and Xiao and Lasaga (1996). 
 
 

 2.2  Data Reduction 

In this section, we outline a general strategy for the determination of rate parameters 
conforming to eqn. (6) from experimental data, using the minerals albite and magnesite as 
examples.  Albite is used as

ineral surface with a (H ) catalyst, 
nhibit dissolution depending on pH. 

fortunately, these variables are almost alwa
how a U-shaped relation (V-shaped on logs
arallel with their solubilities.  For
e pH where the mineral surface hth

neutral.  At low pH, rates increase with decreasing pH catalyz
ncrease with increasing pH, catalyzed by OH-.  i

om Chou and Wollast (1985).  The 
ols) using unweighted non-linear curv

f
itting is accomplished by fitting all of the data to a modified version of eqn. (7): 
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experiments performed under conditions that are far from equilibrium where Ω approaches zero
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the surface area term is omitted as well. 
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Piecewise linear regression is accomplished by first segregating the data into acid, 
neutral, and basic regions, and fitting the groups of data separately to each of the terms in eqn. 
(9).  Fo  in r albite the acidic, neutral, and basic regions were selected by Hellman (1994a) to be
the ranges of pH 1.3 to 4.0, 5.6 to 8.2, and 8.6 to 10.3 respectively.  For the acidic and basic 
mechanisms, the equation 
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and for the neutral mechanism, the following relation is used 
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r curve fitting provides a slightly better fit to the data, but for most minerals, lack of 
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those of Hellman (1994a) and Chou and Wollast (1985).  We r
parameters only to modeling of systems within the range of conditions under which t
parameters were obtained, i.e. from
the few minerals for which p and q have been experimenta

Alekseyev et al., 1997) at pH = 9; these parameters are also shown in Table 1. 
A second illustrative example is for magnesite dissolution at 25 °C (Pokrovsky and 

Schott, 1999).  In this case, magnesite dissolution rates are catalyzed by H+, and at low pH the
mineral surfaces become saturated with H+ so that further decrease in pH does not cause further 
increase in dissolution rate. Further, dissolution rates are apparently catalyzed or inhibited by 
Na+ depending on pH. Finally, magnesite dissolution rates are independent of OH-.  These 
experiments were conducted at pH between 0.19 to 10.13 with pH controlled using HCl, NaOH
NaHCO3, and Na2CO3, and ionic strength controlled by NaCl.  The results are shown graphicall
in Figure 2. 
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Figure 1. Rates of albite dissolution from 25 to 300 °C and pH from 1.3 to 10.3. Data a
100, 200, and 300 °C (open diamonds, triangles and squares, respectively) from 
Hellman, 1994, and at 25 °C (open circles) from Chou and Wollast, 1985. Dashed 
curves: results from non-linear regression. Straight 

regression of 100 °C data. Black curves: sum of results from piecewise linear 
regression. 
 
 
Table 1. Albite Dissolution Rate Parameters. 

 aA blog k cE dn  aA blog k cE  aA blog k cE dn 
Linear 
Regression 

3.23E+01 -9.87 65.0 0.457  1.52E+00 -12.04 69.8  2.96E-05 -16.98 71.0 -0.572 

Non-Linear 
Regression 

1.66E+01 -10.16 65.0 0.317  6.66E-02 -12.56 65.0  1.11E-04 -15.60 66.5 -0.356 

 p q    p q   p q   
eChemical 
Affinity 

-- --    -- --   0.76 90.0   

a. Arrhenius pre-exponential factor A, mole m-2 s-1 for use with equation (5). 
b. Log rate constant k computed from A and E, 25°C, pH=0, log moles m-2 s-1 for use with equation (6). 
c. Arrhenius activation energy E, kJ mole-1. 
d. Reaction order n with respect to H+. 
e. Chemical affinity parameters p and q default to unity if not specified. 
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In the pH range of 0 to ~3, there is only a minimal dependence of rates on pH, the 
reaction order with respect to activity of H+ is small, and increased H+ activity leads to only a 
small increase in rates (Figure 2, open squares).  This behavior results from the saturation of 
reactive surface sites with H+, and can be described using adsorption isotherms (Pokrovsky and 
Schott, 1999).  In the pH range of 3 to 5, faster rates (Fig. 2, open diamonds) apparently result 
from catalysis by Na+ at ionic strength 0.1 to 0.5, as compared with slower rates in experiments 
with low Na+ concentration (Fig. 2, open triangles) at ionic strength ≤0.1; this behavior can be 
described using adsorption isotherms for Na+.  Between pH values of 5 and 8, there is minimal 
dependence on the activity of H+ or Na+ (Fig. 2, open triangles) over the entire range of ionic 
strength from 0.01 to 0.5.  At pH greater than 8, Na+ apparently inhibits reaction rates (Fig. 2, 
open circles) at ionic strength from 0.004 to 0.20); again, this behavior can be described using 
adsorption isotherms for Na+; the fastest rates in this pH range are slightly slower than the rates 
in the near-neutral pH range because alkaline pH values require a finite amount of Na+ from 
NaOH. 

The data used in calculation of magnesite rate parameters are for low ionic strength only 
(≤0.1) in the acidic pH range of 3 to 5, and in the circum-neutral pH range of 5-8 all data are 
used; these data are denoted with open triangles in Figure 2.  For non-linear regression, these 
data are simultaneously fit to a form of eqn. (9) from which the term for the basic mechanism has 
been omitted; the data were obtained from experiments at 25 °C only, so the activation energy is 
omitted as well 

 

)( 15.29815.298 1 K
neutral

n
H

K
acid KaK

dt
dm

+−= +      (13) 

 
For linear regression, the data are fit to a modified form of eqn. (11) for the acidic mechanism 

15.298
     (14) 

 
and for the neutral mechanism, a s alculated, yi ding  
25 °C and an acidic mechanism (posit ctio der.  The gray cur in F  show the 
resu e non-linear , the  da tr ine
the r th the ac , and the black cu . 

ta are la he t tur en of a
activation energies for calcite (discussed below) are used as a first approximation, allowing for 
the c lculation of the pre-ex ential fa rs.  The hemical affinity factors p and
direc okrovsky an om experiments in which the 
initial solutions contai 2+ 2- ate parameters 
deri

data cause of the inability of the selected rate equations 
to ac ous rate catalyzing and inhibiting species. However, the 
non rs that are accurate to a 
first approximation over a wide range of circum-neutral pH. 

 

pHnKrate Hacid +−= log)  
Klog(

imple average is c el  the rate constants at
ive) rea n or ves igure 2

lts of th regression
idic and neutral m

 black
echanism

shed s
s

aight l s in Figure 2 show separately 
esults for bo rve represents their sum

Since da cking for t empera e dep dence m gnesite dissolution rates, the 

a pon cto  c  q are taken 
tly from P d Schott (1999), and were derived fr

ned varying amounts of Mg  and CO3 .  Data for the r
ved from the regression are summarized in Table 2. 

Neither piecewise linear regression nor non-linear curve fitting provide a good fit to the 
 under acidic and basic pH conditions, be
count for surface adsorption of vari

-linear curve fitting method allows the calculation of rate paramete
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Figure 2. Rates of magnesite dissolution at 25 °C and pH from 0.19 to 10.13. Data 
25 °C from Pokrovsky and Schott, 1999; open triangles, data used in piecewise lin
regression; open squares, other data. Dashed lines, results from piecewise linear 
regression of acidic and neutral mechanisms. Black curves, sum of results from 
piecewise linear regression. Gray curve, results from non-linear curve fitting. 
 
 
Table 2.  Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 

ear 

 aA blog k cE dn  aA blog k cE 
Linear 
Regression 

1.40E-04 -6.38 14.5 0.589  6.05E-06 -9.34 23.5 

Non-Linear 
Regression 

1.62E+32 32.21 14.5 0.448  4.27E-10 -9.37 23.5 

 p q    p q  
eChemical 
Affinity 

4.00 1.00    -- --  

a. Arrhenius pre-exponential factor A, mole m-2 s-1 for use with equation (5). 
b. Log rate constant k computed from A and E, 25°C, pH=0, log mole m-2 s-1 for use with 
equation (6). 
c. Arrhenius activation energy E, kJ mole-1.
d. Reaction order n with respect to H+.
e. Chemical affinity parameters p and q default to unity if not specified. 
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2.3 Limitations and Uncertainties 

etics to geochemical modeling is subject to a number of limitations 
es in the experimental methods and materials from which the rate 

parameters are derived, and from the modeling software used for the simulations.  Ideally, 
available over wide ranges of temperature and pressure for 

dissolution of perfectly crystalline minerals under conditions far from equilibrium i.e. where the 
 is large, so that further increases in chemical affinity lead to no observed 
on rates.  Additional data would be available to quantify slowing of reaction 

rates as the chemical affinity decreases, as equilibrium is approached with increasing 
concen

 minerals 

ite.  
ilable 

lcite 
(Alkattan et al., 1998); 2) in some experimental reactor designs, particle abrasion may lead to 

 surface fines which can be removed 
with solvents, but also may produce particles which may chemically re-bind to mineral surfaces 
(P ch, 1981b), and/or produce crystal defects at or near mineral surfaces (Bloom, 1983; 
Furrer et al., 1993; Nagy, 1995; Nagy et al., 1991; Petro , 198 eland and Stumm, 1992), 
which may lead to faste l ap  rates; d 4) there is also a degree of uncertainty as to 
whether the reactive su rea equate  with th omet ET e area
(Aa rd an son ; Ga t al., 2 1; Hel  et al., 1984; Lasaga, 1998).  At 
leas e stu utie  200 uartz ssolutio s shown that an increase in BET 
surface area during dis n co rimarily of un- tive e wal  con  
that geometr ce ovid more accurate calculation of dissolution rates.

The rate equation we have selected, eqn. (7), is also subject to furthe atio oes 
not account for temperature dependence of the pre-expo ial factor resulting from variation in 
the velocity ion solv ies, no oes it  not t for rent pH
dependence of the activation ener ich ca be desc  usin rptio herms (Lasaga, 
1995).  The selected equation applies only to bulk dissolution rates, and does not account for 
cry ograp tro inera lution e. variation of dissolution rates on different 
crystallographic surface planes. 
 
 

Application of kin
resulting from uncertainti

experimental data would be 

chemical affinity
increase in reacti

tration of dissolved components that are contained in the mineral structure.  Further data 
would be available for dissolved components not contained in the mineral structure that might 
catalyze or inhibit the reactions.  Further, data would also be available to account for varying 
mineral compositions in each solid solutions series.  Finally, data would be available for
that are not perfectly crystalline, i.e. minerals with crystal defects, cation disordering, or igneous 
exsolution features — for which the required number of experiments would be nearly infin
Most of these data do not yet exist, and for those minerals for which data exist, data are ava
mostly for experiments conducted only under conditions that are far from equilibrium, and 
values for p and q are assumed to be equal to unity, which is likely incorrect. 

Additional limitations include various factors of experimental design and solid phase 
preparation: 1) stirring rates may be insufficient to ensure that there are not concentration 
gradients near mineral surfaces, which may slow dissolution reactions(Alkattan et al., 1998; 
Metz and Ganor, 2001), especially for minerals that have fast overall rates such as ca

faster apparent rates; 3) grinding of samples may produce

etrovi
vich 1b; Wi

r initia parent  an
rface a can be d e ge ric or B surfac s 

gaa d Helge , 1982 utier e 00 geson
t on dy (Ga r et al., 1) of q di n ha

solutio nsists p reac tch pit ls, and c eslud
ic surfa area pr es for  

r limit ns. It d
nent

in solut of dis ed spec r d  does accoun  appa  
gy, wh n ribed g adso n isot

stall hic con l of m l disso , i.
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3. SU  

3.1 Tecto tes

3.1.1 SiO2 orp

3.1  Qua

ate d pa ters for quartz from several sources were evaluated (Bennett, 1991; 
Bennett et al., 1988; Bird et al., 1986; Blake and Walter, 1999; Brady, 1992; Dove, 1994; Dove, 
1999; Dove and Crerar, 1990; Dove and Elston, 1992; Dove and 97; r et 01; 
Knauss and Copenhaver, 1995; Knauss and W ry, 1988; Rimstidt and Barnes, 1980; 
Schwartzentruber et al., 1987; Tester et al., 1994; Welch d Ullm 92) from er et 
al. were sele r the al pH m ecause utho  ab orrel
con ntly per al resu  with the esults o ny w  incl  Ben
(1991), Berger et al. (1994), Blum et al. (1990), Brady and Walther (1990), Dove and Crerar 
(19  Kita 960) stidt a Barnes ( 980), Sie ert et al. (1963), Van Lier et al. (1960), 

  In the acidic region, dissolution 
tes are apparently independent of pH (Dove, 1994; Knauss and Wolery, 1988; Rimstidt and 
arnes, 1980), and can be equated with rates in the neutral region at identical T and P.  The data 
sed to

 RE LTS

silica  

Polym hs 

.1.1 rtz 

R  data an rame

Nix, 19  Gautie  al., 20
ole

 an an, 19 . Data  Test
cted fo  neutr mechanis  b  the a rs were le to c ate 

siste  their ex iment lts  r f ma orkers, uding nett 

90), hara (1 , Rim nd 1 b
and Weill and Fyfe (1964) at temperatures from 25 to 625 °C.
ra
B
u  regress rate parameters using eqn. (11) for neutral pH are shown in Table 3. 

 
Table 3. Quartz dissolution Rate Data in Pure H2O. 

T, °C T, K alog k blog k  T, °C T, K alog k blog k 
23 296.15 -13.41 -14.24  400 673.15 -4.45 -- 
23 296.15 -13.38 -14.21  400 673.15 -4.35 -- 
50 323.15 -12.22 -13.05  440 713.15 -4.16 -- 

323.15 -12.21 -13.04  440 713.15 -4.35 -- 
50 323.15 -12.19 -13.02  440 713.15 -4.51 -- 
70 343.15 -11.33 -12.18  480 753.15 -4.41 -- 

100 373.15 -10.19 -11.03  480 753.15 -4.19 -- 
100 373.15 -10.22 -11.06  70 343.15 -12.16 -12.22 
100 373.15 -10.20 -11.04  80 353.15 -11.46 -11.52 
100 373.15 -10
125 398.15 -9.32 

50 

.45 -11.3  90 363.15 -11.16 -11.22 
-10.17  248 521.15 -6.08 -- 

125 398.15 -9.20 -10.05  250 523.15 -5.98 -- 
125 398.15 -9.08 -9.93  269 542.15 -5.84 -- 
125 398.15 -9.17 -10.02  291 564.15 -5.55 -- 
125 398.15 -9.19 -10.03  315 588.15 -5.22 -- 
125 398.15 -9.55 -10.4  332 605.15 -5.02 -- 
125 398.15 -9.75 -10.6  400 673.15 -3.95 -- 
125 398.15 -9.58 -10.43  625 898.15 -2.97 -- 
125 398.15 -9.82 -10.67  105 378.15 -10.27 -11.5 
125 398.15 -9.59 -10.44  145 418.15 -8.36 -9.59 
150 423.15 -8.42 -9.26  170 443.15 -8.43 -9.66 
150 423.15 -8.48 -9.33  265 538.15 -6.56 -7.79 

Table 3. Quartz dissolution Rate Data in Pure H2O - continued. 
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T, °C T, K alog k blog k  T, °C T, K alog k blog k 
175 448.15 -8.38 -9.23  305 578.15 -6.14 -7.37 
175 448.15 -8.34 5 -10.75 -11.18 
175 448.15 -8.38 353.15 -10.89 -11.25 
175 448.15  80 353. 1.52 
175 448. -8.32 -9.16  200 473 -7.63 -7.93 

473 -7.88 -8.72  200 473. -7.35 -7.65 
473 -7.82 -8.67  200 473.1 -7.28 -7.58 
473 -7.05 --  200 473.1 -7.38 -7.68 
473 -7.21 --  200 473.1 -7.26 -7.56 
473. -7.30 --  201 474.1 -7.43 -7.73 
523.1 -6.67 --  250 523 -6.74 .04 

-5.97 
-6.01 -6.31 

--  300 573.15 -6.15 -6.45 
--  40 313.15 -13.13 -12.7 

50 323.15 -11.73 -12.3 
60 333.15 -11.33 -11.9 

 70 343.15 -10.83 -11.4 
 

221 494.15 -6.96 --  200 473.15 -6.84 -7.92 
221 494.15 -7.12 --  300 573.15 -5.38 -6.46 
253 526.15 -6.38 --  300 573.15 -5.63 -6.71 

 
a. Log mole m  s , calculated by Tester et al. (1994) using geometric surface area 
b. Log mole m-2 s-1, calculated by Tester et al. (1994) using BET surface area 

-9.19  80 353.1
-9.23  80 

-8.28 -9.12 15 -10.99 -1
15 .15 

15200 
200 

.15 

.15 
 

5 
200 .15 5 
200 .15 5 
200 15 5 
250 5 .15 

5 
 -7

-6.27 184 457.15 -7.96 --  300 573.1
184 457.15 -8.10 --  300 573.15 

184.5 457.65 -8.32 
202 475.15 -7.31 

202.5 475.65 -7.49 --  
--  203 476.15 -7.29 

215 488.15 -7.05 -- 
221 494.15 -6.89 --  70 343.15 -10.93 -11.5

255 528.15 -6.50 --     
-2 -1

 

ism 

 for rates under alkaline conditions, which are given terms of reaction order with respect 
to OH .

ic 

re summarized in Table 4.  The source 
f the small difference between our results and those of Tester et al. (1994) is uncertain.  The 
hemical affinity parameters were not determined, and the chemical affinity parameters p and q 

 

 

 
Another series of studies from Dove and co-workers (Dove, 1994; Dove, 1999; Dove and 

Crerar, 1990; Dove and Elston, 1992; Dove and Nix, 1997) demonstrate an important 
phenomenon, that sodium ion catalyzes the OH--catalyzed (base) dissolution reaction mechan
(as do Li, K, Mg, Ca, and Ba).  These data were not used because adsorption isotherms must be 
used to implement their results; therefore, we use the results from Knauss and Wolery (1988) 
directly

-  
Results from the regression calculations for the neutral mechanism using both geometr

and BET surface area performed herein and those performed by Tester et al. (1994), and results 
from Knauss and Wolery (1988) for the base mechanism a
o
c
are assumed to be unity. 
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Table 4. Quartz Dissolution Rate Parameters. 

Linear Regression Parameters 
 l Mec  Bas ism Neutra hanism e Mechan
 a blog k   blog cE A cE aA k dn 
equart 3 .9  -- -- 
fquart 2 .1  -- -- 
gquart 2 .6  -- -- 
hquart 2 .7  -- -- 
iquart --  -16.29 66 .5 
a. Arrhenius pre-expone r A, mole with equation (5). 
b. log rate constant k co m A and  pH=0, log mo  m-2 s-1 for use quation (6
c. Arrh  activation e J mole-1

d. Reaction order n with respect to H+.

a. 
ace area. 

From Knauss and Wolery (1988), A adjusted here from 491 to 10 to be consistent with the results of Tester et al. (1994). 

z 33 -13.40 90 -- -- 
z 76 -13.34 90 -- -- 
z 3.3 -13.99 87 -- -- 
z 4 -13.99 87 -- -- 
z -- -- 

-2 -1
10 1083 -0

ntial facto
mputed fro

 m  s  for use 
 E, 25°C, le  with e ).

enius nergy E, k .

e. Calculated using geometric surface area. 
f.  Calculated by Tester et al. (1994)using geometric surface area. 
g. Calculated using BET surface are

 Calculated by Tester et al. (1994)using BET surfh.
i. 
 
 

3.1.1.2 Amorphous SiO2, Cristobalite, and SiO2 Polymorph Precipitation 

culated rate equation p for am us silica d tion from 
Icenhower and Dove (2000), and Rimstidt and 80) w luated.  D rom 
Icenho 00) were selected beca onduc ny individual experimental 
runs, and they were able to correlate their data with data from o rkers. Th  parameters 
are sum able 6.  The presence of sm ts of  solution ficantly 
enhances dissolution rates (21x at 0.05m Incenhower and Dove, 2000), this can be accounted for 
by using adsorption isotherms, but cannot be de ith ou ted rate eq ns (eqns. 5 
and 6) 

iled directly from Rimstidt 
and Ba under the assumption 
that th  1980), 
nd eq

Table 5. Amorphous Silica Dissolution Rate Data in Pure H2O. 

T, °C T, K alog k  T, °C T, K alog k 

Rate data and cal arameters orpho issolu
Barnes (19 ere eva ata f

wer and Dove (20 use they c ted ma
ther wo e rate

marized in T all amoun NaCl in  signi

scribed w r selec uatio

Rate parameters for α-cristobalite and β-cristobalite are comp
rnes (1980).  The rate parameters were calculated by the authors 

e precipitation rates for all of the SiO2 polymorphs are equal (Rimstidt and Barnes,
a n. (8). These data are also summarized in Table 6. 
 
 

40 313.15 -11.36  80 353.15 -10.47 
40 313.15 -11.17  80 353.15 -10.47 
60 333.15 -10.75  250 523.15 -6.59 
60 333.15 -10.84  225 498.15 -6.86 
60 333.15 -10.63  225 498.15 -6.96 
60 333.15 -10.57  200 473.15 -7.4 
60 333.15 -10.65  200 473.15 -7.34 
60 333.15 -10.99  175 448.15 -7.89 
60 333.15 -10.97  175 448.15 -7.74 
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Table 5. Amorphous Silica Dissolution Rate Data in Pure H2O - continued. 

T, °C T, K alog k  T, °C T, K alog k 
60 333.15 -10.92  150 423.15 -8.41 
60 333.15 -10.98  150 423.15 -8.53 
60 333.15 -10.93  225 498.15 -6.86 
60 333.15 -10.97  225 498.15 -7.05 
60 333.15 -10.93  200 473.15 -7.24 
60 333.15 -11.05  200 473.15 -7.27 
60 333.15 -11.22  175 448.15 -7.97 
60 333.15 -11.2  175 448.15 -8.1 
60 333.15 -11.15  150 423.15 -8.24 
60 333.15 -11.18  125 398.15 -8.75 
60 333.15 -11.09  100 373.15 -9.36 
80 353.15 -10.28  100 373.15 -9.54 

a. Log mole m-2 s-1 for use with equation (6); data for experiments in de-ionized water only, from 
Icenhower and Dove, 2000. 
 
 
Table 6. Amorphous Silica and Cristobalite Dissolution, and Silica Polymorph 
Precipitation Rate Parameters. 

 Neutral Mechanism 
Dissolution aA blog c k E 
dAmorphous Silica 6.65E+00 -12.23 74.5 
eAmorphous Silica 1.01E+01 -12.31 76.0 
fAmorphous Silica 1.85E-01 -12.77 68.7 
fα-cristobalite 1.20E-01 -12.31 65.0 
fβ-cristobalite 7.60E-02 -12.14 62.9 
 

Precipitation    
fAll SiO  polymorphs 2.02E-01 -9.42 49.8 2

a. Arrhenius pre-exponential factor A, mole m-2 s-1 for use with equation (5). 
b. log rate constant k at 25°C and pH = 0, log mole m-2 s-1 for use with equation (6).
c. Arrhenius activation energy E, kJ mole-1. 
d. Reported values for k and E from Incenhower and Dove (2000), A calculated herein. 
e. A and E regressed using data from Incenhower and Dove (2000), Table 5; k calculated from A and E herein. 
f. Reported values for k and E from Rimstidt and Barnes (1980); A calculated from k. 
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3.1.2 Feldspars 

3.1.2.1 Plagioclase Feldspars 

re evaluated from Alekseyev et al. (1997), Amrhein 
and Suarez (1988), Amrhein and Suarez (1992), Berg and Banwart (2000), Bevan and Savage 
(198 ter (199 ), Blak  Blum d Stilli
a lther (1989), Brantley and Sti (199 Bur l. (19 3), B erg Cle
(1976), Carroll and Knauss (2001), Casey et al 91)  and posito 92),  a
Brantley (1997), Chen et al. (2000), Chou and Wollast (1984), Ch  and W last ), 
et al. (2003), Fleer and Johnston (1986),Gautier et al. (1994), Haja  et al. 98), es
al. 84) H en rner 979), dren and Speyer (1987), Hellma 994 ell
(1994a), Hellman (  Kna s and lery ),  and openh r (19 La
(19 , Lag  (1 üttg et al. ( 9), M y a ns (1 86), M kam  (1
Mu y an lge 87; 1 89), O ers e 19 lkers nd Sc  (19 el
and Gislason (2001), Oelkers (2001b), Oxburgh et al. (1994), Rafal'skiy e 199 afa
an syag (199 illing et al. ), S gs 996 Swoboda-Colberg and 
D  (19 Talm d Ne itt (1  Tay t al 0a), T uzuki Suzu 198
Teng et al. (2001), Utsunomiy et al. ), W  an an (1 92), W  an lma
(1993), We nd n (19 6), an lch llm 000).

Unlike the plagioclase endmem albi cus ove, issolu ates the 
re der o  pl ase so lution seri strain os he 
available data are b owar  low t u d n utral  acid  (B nd 
Stillings, 1995).  One important but poorly qua ed o tion  that di olution rates 
in e co ous h inc  effect is more pronounced for 
m nort com ons;  25°C and pH = 5, rates increase by approximately one order of 
m ude  albite (log k ≈ 12 lo -2 to l rite ( g k ≈ -11 log mo -2 s-1), 
and by alm ree s of m gnitu twe bra and anorthite (log k ≈ -8 log mo
m inishes with decreasing pH, and the 
difference in the logarithm of rate approaches a linear relation with respect to composition at pH 
= 2. A secon  observ tion tha as no n w uan s tha issolut n activ ion ene y 
decreases with increa g anorthite content. 

Our general strategy is to identify data from various workers that are consistent with one 

sible rate data are selected from experiments in 
ow-through reactors, where dissolution rates were measured using the concentration of 
issolved silica in the reactor output fluid, and where silica concentrations were allowed to reach 
eady-state, thus indicating steady-state thickness of any possible leached layer.  One issue not 
ddressed in the cited works is the extent to which cation disorder in the minerals may affect the 
iven rates.  Data were selected for the plagioclase solid solution series, and are summarized in 
bles as follows: albite, Table 7; oligoclase, Table 8; andesine, Table 9; labradorite, Table 10; 
ytownite, Table 11; anorthite, Table 12.  Primary constraints are the data and results for albite 
 = 25 to 300 °C, pH = 1.3 to 10.3) and anorthite (T = 8 to 95 °C, pH = 2.43 to 10.2), with 

interpolation obtained graphically for the components of the solid solution.  The derived 
parameters are summarized in Table 13.  Chemical affinity parameters p and q for albite are 

Plagioclase dissolution rate data we
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65) ache 976), L e 199 anle nd Eva 9 ura i et al. 998), 
rph d He son (19 9 elk t al. ( 94), Oe  a hott 95), O kers 

t al. ( 0), R l'skiy 
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ost th  order a de be en la dorite l 
-2 s-1) (Blum and Stillings, 1995).  This effect dim
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another as primary constraints, and to interpolate pre-exponential factors and activation energies 
hat are consistent with the data.  Wherever post
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0.760 and 90.0 respectively (Alekseyev et al., 1997), but their use in modeling should be limited 
to conditions near the experimental conditions under which they were obtained, 300 °C and pH = 
9. 
 

Table 7. Albite Dissolution Rate Data. 

cid M anism eutr nism chanism A ech   N al Mecha   Base Me
T, °C  a log k alog k pH log k  T, °C pH  T, °C pH 

25 1.1 -1 5 -11.  95 -10.97 0.2  25 5.1 82  25 9.
25 2  -1 5 -11.  95 -11.05 

2  -1 2 -11.  95 -11.13 
-1 5 -11.  5 
- 1 -11.  1.2 -10.55 

 - 4  -11.  .55 -10.6 
1 -11.47  25 7.73 -11.83  25 12.3 -10.38 

7.95 -11.67  100 10.3 -8.92 
100 2.0 -9.07  100 5.7 -9.47  200 9.3 -7.15 
100 4.0 -9.00  100 5.7 -9.62  300 8.6 -6.25 
100 4.0 -9.50  100 7.7 -9.35  300 8.6 -6.01 
100 4.0 -9.38  100 8.2 -9.77  300 9.2 -5.97 
200 2.0 -6.72  172 5.7 -8.09  300 9.2 -5.46 
200 2.0 -6.63  191 5.6 -7.61  300 10.0 -5.29 
200 2.0 -6.80  200 5.6 -7.79     
200 4.0 -7.54  200 7.5 -7.79     
300 1.3 -5.13  222 5.6 -7.27     
300 2.2 -5.17  300 5.7 -6.35     
300 2.2 -5.57  300 5.7 -6.44     
300 3.4 -6.06  300 5.7 -6.30     
300 4.0 -6.36  300 6.8 -6.13     

    300 7.4 -6.30     

    300 7.7 -5.92     

    300 7.7 -6.03     
a. Log mole m-2 s-1. Data at 25 °C from Chou and Wollast (1985), for Amelia albite, composition not specified.  Data from 100 to 300 
°C from Hellman (1984), for Amelia Albite, Ab100An0Or0 (1984). 

.05 0.5  25 5.35 75  25 9.
25 .45 0.8  25 5.47 65  25 9.
25 2.9 1.2  25 5.63 83  25 10.6 -10.9
25 3 11.  25 5.63 92  25 1
25 3.5 11.  25 5.73 92  25 11
25 4.
100 2.0 -9.05  25 
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Table 8. Oligoclase Dissolution Rate Data. 

 aComposition     
an ab or T, °C bpH clog k  Source 
20 -- -- 25 2 -10.85  Casey et al., 1991 
20 -- -- 25 2 -10.44  Casey et al., 1991 
21 -- -- 25 2 -10.69  Casey et al., 1991 
13 -- -- 25 3 -11.47  Oxburgh et al., 1994 
20 -- -- 25 3 -10.94  Holdren and Speyer, 1987 

-

7 cy, 1976 

a. -- = Not given
b. Acid mechanism, pH 2-4. tral mechanism, pH 5.1-7. 
c. Log mole m-2

13 -- -- 25 3.6 -11.70  Oxburgh et al., 1994 
13 -- - 25 4 -11.92  Oxburgh et al., 1994 

Oxburgh et al., 1994 13 -- -- 25 4.6 -12.22  
13 -- -- 25 5.1 -12.10  Oxburgh et al., 1994 
24 0 6 25 5.3 -11.59  Busenberg and Clemen
22 73 

-- 
5 25 5.4 -11.63  Stillings et al.,  1996 

13 -- 25 7 -11.96  Oxburgh et al., 1994 
. 

6; neu
 s-1. 
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Table 9. Andesine Dissolution Rate Data. 

aComposition      
an ab or T, °C bpH clog k  Source 
46 -- -- 25 2 -10.16  Casey et al., 1991 
46 -- -- 25 2 -10.01  Casey et al., 1991 
46 -- -- 25 3 -10.64  Holdren and Speyer, 1987 
49 -- -- 22 3.1 -9.78  Welch & Ullman., 1993 
49 -- -- 22 3.1 -9.27  Welch & Ullman., 1993 
46 -- -- 25 3.1 -10.65 

-1  
 Oxburgh et al., 1994 

47 51 2 25 3.13 0.62  Stillings et al., 1996 
49 
49 

-- 
-- 

-- 
-- 

22 
22 

3.8 
4.1 

-10.12 
-9.81 

 
 

Welch & Ullman., 1993 
Welch & Ullman., 1993 

46 -- -- 25 4.1 -11.15  Oxburgh et al., 1994 
47 51 2 25 4.11 -11.15  Stillings et al., 1996 
47 51 2 25 5.08 

4 
993 
mency, 1976 
993 
 

993 

991 

991 

a. -- = Not given
b. Acid mechanism, pH 2-4. utral nis .1-7. echanis , pH 
c. Log mole m-2 s

-11.24  Stillings et al., 1996 
46 -- -- 25 5.1 -11.24  Oxburgh et al., 199
49 -- -- 22 5.3 -10.47  Welch & Ullman., 1
43 50 8 25 5.3 -11.86  Busenberg and Cle
49 -- -- 22 5.6 -10.51  Welch & Ullman., 1
43 50 7 25 5.61 -11.52  Stillings et al.,  1996
49 -- -- 22 5.7 -10.78  Welch & Ullman., 1
49 -- -- 22 5.8 -10.74  Welch & Ullman., 1993 
35 65 0 250 6.83 -8.48  Rafal'skiy and Prisyagina, 1
47 51 2 25 7.22 -11.21  Stillings et al.,  1996 
46 -- -- 25 7.3 -11.29  Oxburgh et al 1994 
35 65 0 150 7.46 -9.39  Rafal'skiy and Prisyagina, 1
49 -- -- 22 7.7 -10.7  Welch & Ullman., 1993 
49 -- 

. 
-- 22 9 -10.31  Welch & Ullman., 1993 

11; Ne  mecha m, pH 5 7; base m m 9. 
-1. 
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Table 10. Labradorite Dissolution Rate Data. 

aComposition      
an ab or T, °C bpH clog k  Source 
51 -- -- 230 0.41 980 -6.44  Tsuzuki and Suzuki, 1
51 -- -- 245 0.45 980 

980 
 

980 
0.98  

980 
, 1980 

 
1.69 980 

1976 

 -- 31 3.2 -9.45  Carroll and Knauss, 2001 
.02  Carroll and Knauss, 2001 

60 -- -- 61 3.2 -8.37  Carroll and Knauss, 2001 
60 -- -- 100 3.2 -8.34  Carroll and Knauss, 2001 
60 -- -- 30 3.21 -9.53  Carroll and Knauss, 2001 
60 -- -- 130 3.22 -7.67  Carroll and Knauss, 2001 
60 -- -- 100 3.24 -8.11  Carroll and Knauss, 2001 
60 -- -- 130 3.24 -7.66  Carroll and Knauss, 2001 
60 -- -- 100 3.25 -8.09  Carroll and Knauss, 2001 
60 -- -- 60 3.29 -8.83  Carroll and Knauss, 2001 
60 -- -- 100 3.29 -8.31  Carroll and Knauss, 2001 
60 -- -- 130 3.3 -7.72  Carroll and Knauss, 2001 
60 -- -- 100 3.37 -8.52  Carroll and Knauss, 2001 
60 -- -- 150 3.5 -7.18  Carroll and Knauss, 2001 
57 43 0 200 4.88 -8.48  Lagache, 1965 
53 44 3 25 5.3 -11.9  Taylor et al., 2000 
70 -- -- 80 6 -9.01  Blake and Walter, 1999 

a. -- = Not given. 
b. Acid mechanism, pH 0.84-6. 
c. Log mole m-2 s-1. 

-6.48  Tsuzuki and Suzuki, 1
51 -- -- 230 0.81 -6.35  Tsuzuki and Suzuki, 1
51 -- -- 245 0.84 -6.71  Tsuzuki and Suzuki, 1980
51 -- -- 230 0.96 -6.71  Tsuzuki and Suzuki, 1
51 -- -- 245 -6.71  Tsuzuki and Suzuki, 1980
51 -- -- 230 1.21 -7.6  Tsuzuki and Suzuki, 1
51 -- -- 245 1.23 -7.48  Tsuzuki and Suzuki
51 -- -- 230 1.67 -7.48  Tsuzuki and Suzuki, 1980
51 -- -- 245 -7.44  Tsuzuki and Suzuki, 1
60 -- -- 25 2 -9.85  Busenberg and Clemency, 
61 -- -- 25 3.2 -10.6  Casey et al., 1991 
61 -- -- 25 3.2 -10.5  Taylor et al., 2000 
61 -- -- 25 3.2 -10.5  Taylor et al., 2000 
61 -- -- 25 3.2 -10.6  Taylor et al., 2000 
61 -- -- 25 3.2 -10.5  Taylor et al., 2000 
61 -- -- 25 3.2 -10.6  Taylor et al., 2000 
60 --
60 -- -- 60 3.2 -9
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Table 11. Bytownite Dissolution Rate Data. 

aComposition      
an ab or T, °C pH blog k  Source 
76 -- -- 25 2 -9.74  Oxburgh et al., 1994 
76 -- -- 25 3 -9.7  Oxburgh et al., 1994 

3.1 

4.4 ., 1994 

5.3 
5.65 

976 

a. -- = Not given. 
b. Acid mechanism, pH 2-5. tral mechanism, pH 5.65-7.
c. Log mole m-2 s

76 -- -- 25 -10.31  Oxburgh et al., 1994 
Welch and Ullman, 2000 77 -- -- 35 3.2 

3.8 
-11.13  

76 -- -- 25 -10.91  Oxburgh et al., 1994 
77 -- -- 22 4 -8.69  Welch and Ullman, 1993 
76 -- -- 25 -10.91  Oxburgh et al
76 -- -- 25 4.75 -8.67  Casey et al., 1991 
77 -- -- 22 4.9 -8.89  Welch and Ullman, 1993 
76 -- -- 25 5 -10.97  Oxburgh et al., 1994 
76 -- -- 25 -9.91  Holdren and Speyer, 1987 
77 -- -- 5 -11.86  Welch and Ullman, 2000 
77 -- -- 20 5.65 -11.4  Welch and Ullman, 2000 
76 24 0 25 5.65 -10.76  Stillings et al., 1996 
77 22 -- 25 5.65 -11.97  Busenberg and Clemency, 1
77 -- -- 22 5.7 -10.2  Welch and Ullman, 1993 
77 -- -- 22 7.2 -10.12  Welch and Ullman, 1993 

3; Neu 2. 
-1  .
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Table 12. Anorthite Dissolution Rate Data. 

aComposition      
an ab or T, °C pH blog k  Source 
100 0 0 25 2 -10.32  Fleer, 1982 
100 0 0 50 2 -9.72  Fleer, 1982 
100 0 0 70 2 -9.59  Fleer, 1982 
92 -- -- 25 3 -9.77  Holdren and Speyer, 1987 
93 -- -- 25 3.6 -10.24  Amrhein and Suarez, 1992 

 
 
 
 
 

 

97 -- -- 60 2.53 -6.78  Oelkers and Schott, 1995 

unk -- -- 25 4 -10.65  Bailey, 1974 
unk -- -- 45 4 -10.35  Bailey, 1974 
unk -- -- 65 4 -10.35  Bailey, 1974 
93 -- -- 25 4.45 -10.83  Amrhein and Suarez, 1992
93 -- -- 25 4.65 -11.33  Amrhein and Suarez, 1992
93 -- -- 25 4.7 -11.27  Amrhein and Suarez, 1992
93 -- -- 25 6 -10.14  Amrhein and Suarez, 1992
93 -- -- 25 6 -10.69  Amrhein and Suarez, 1992
100 0 0 25 6.7 -10.83  Berg and Banwart, 2000 
100 0 0 25 7.4 -11.15  Berg and Banwart, 2000 
93 -- -- 25 7.65 -11.37  Amrhein and Suarez, 1992
100 0 0 25 8.1 -11.11  Berg and Banwart, 2000 
100 0 0 25 8.4 -10.82  Berg and Banwart, 2000 
100 0 0 70 10.2 -11.41  Fleer, 1982 
97 -- -- 45 2.46 -6.79  Oelkers and Schott, 1995 
97 -- -- 45 2.47 -6.86  Oelkers and Schott, 1995 
97 -- -- 45 2.65 -7.09  Oelkers and Schott, 1995 
97 -- -- 45 2.56 -7.01  Oelkers and Schott, 1995 
97 -- -- 45 2.56 -7.06  Oelkers and Schott, 1995 
97 -- -- 45 2.58 -6.97  Oelkers and Schott, 1995 
97 -- -- 45 2.48 -6.94  Oelkers and Schott, 1995 
97 -- -- 60 2.53 -6.65  Oelkers and Schott, 1995 
97 -- -- 60 2.78 -7.09  Oelkers and Schott, 1995 
97 -- -- 60 2.54 -6.75  Oelkers and Schott, 1995 
97 -- -- 60 2.65 -6.94  Oelkers and Schott, 1995 
97 -- -- 60 2.56 -6.82  Oelkers and Schott, 1995 
97 -- -- 60 2.52 -6.76  Oelkers and Schott, 1995 
97 -- -- 60 2.52 -6.74  Oelkers and Schott, 1995 
97 -- -- 60 2.51 -6.58  Oelkers and Schott, 1995 
97 -- -- 60 2.72 -6.92  Oelkers and Schott, 1995 
97 -- -- 60 2.54 -6.77  Oelkers and Schott, 1995 
97 -- -- 60 2.77 -7.04  Oelkers and Schott, 1995 
97 -- -- 60 2.52 -6.70  Oelkers and Schott, 1995 
97 -- -- 60 2.62 -6.87  Oelkers and Schott, 1995 
97 -- -- 60 2.50 -6.68  Oelkers and Schott, 1995 
97 -- -- 60 2.65 -6.96  Oelkers and Schott, 1995 
97 -- -- 60 2.78 -7.16  Oelkers and Schott, 1995 
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Table 12. Anorthite Dissolution Rate Data - continued. 

aComposition      
an ab or T, °C pH blog k  Source 
97 -- -- 60 2.74 -7.13  Oelkers and Schott, 1995 
97 -- -- 60 2.68 -7.00  Oelkers and Schott, 1995 
97 -- -- 60 2.63 -6.94  Oelkers and Schott, 1995 
97 -- -- 60 2.81 -7.21  Oelkers and Schott, 1995 
97 -- -- 60 2.59 -6.93  Oelkers and Schott, 1995 
97 -- -- 60 2.56 -6.89  Oelkers and Schott, 1995 
97 -- -- 60 2.71 -7.14  Oelkers and Schott, 1995 
97 -- -- 60 2.54 -6.90  Oelkers and Schott, 1995 
97 -- -- 60 2.56 -6.64  Oelkers and Schott, 1995 
97 -- -- 60 2.60 -6.77  Oelkers and Schott, 1995 
97 -- -- 60 2.75 -7.06  Oelkers and Schott, 1995 
97 -- -- 60 2.66 -6.92  Oelkers and Schott, 1995 

 Oelkers and Schott, 1995 
97 -- -- 60 2.55 -6.85  Oelkers and Schott, 1995 
97 -- 2.70 O lkers an
97 - 2.61 O lkers

- -- 60 2.72 O lkers hott,  
- 2.58 O lkers hott,

- - 2.77 O lkers a Schott, 1995 
- - 2.65 O lkers a Schott, 1995 
- - 2.63 O lkers a Schott, 1995 
- - 2.46  O lkers a Schott, 1995 
- - 2.41  O lkers a Schott, 1995 

 Oelkers and Schott, 1995 
2.51 -6.61  Oelkers and Schott, 1995 

60 2.55 -6.72  Oelkers and Schott, 1995 
97 -- -- 60 2.61 -6.88  Oelkers and Schott, 1995 
97 -- -- 60 2.53 -6.74  Oelkers and Schott, 1995 

-- 60 2.58 -6.94  Oelkers and Schott, 1995 
97 -- -- 60 2.67 -6.77  Oelkers and Schott, 1995 
97 

 

5 
75 2.61 -6.78  Oelkers and Schott, 1995 

97 -- -- 75 2.67 -6.86  Oelkers and Schott, 1995 

97 -- -- 60 2.51 -6.70 

-- 60 
-- 60

-7.13  e d Schott, 1995 
hott,  - 

 
  -7.02 

-6.96 
 
 

e
e

 and Sc
and Sc

1995
99597 

97 
-

-- 
 
 and Sc

1
 1995 - 60 -6.72  e

97 - - 60 -7.10  e nd 
97 - - 60 -6.89  e nd 
97 - - 60 -6.85  e nd 
97 - - 60 -6.70  e nd 
97 - - 60 -6.55  e nd 
97 -- -- 60 2.62 -6.81 
97 -- -- 
97 -- -- 

60 

97 -- 

-- -- 60 3.08 -7.52  Oelkers and Schott, 1995 
97 -- -- 60 2.90 -7.22  Oelkers and Schott, 1995 
97 -- -- 60 2.87 -7.16  Oelkers and Schott, 1995 
97 -- -- 60 3.00 -7.40  Oelkers and Schott, 1995 
97 -- -- 60 2.91 -7.28  Oelkers and Schott, 1995 
97 -- -- 60 2.94 -7.38  Oelkers and Schott, 1995 
97 -- -- 75 2.52 -6.53  Oelkers and Schott, 1995 
97 -- -- 75 2.54 -6.63  Oelkers and Schott, 1995
97 -- -- 75 2.71 -6.94  Oelkers and Schott, 1995 
97 -- -- 75 2.56 -6.69  Oelkers and Schott, 199
97 -- -- 
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Table 12. Anorthite Dissolution Rate Data - continued. 

aComposition      
an ab or T, °C pH blog k  Source 
97 -- -- 75 2.51 95 -6.63  Oelkers and Schott, 19
97 -- -- 75 2.50 95 

2.65 95 
2.60 95 
2.53 95 
2.73 95 
2.58 95 
2.55 95 
2.68 95 
2.58 95 

-6.61  Oelkers and Schott, 19
97 -- -- 95 -6.71  Oelkers and Schott, 19
97 -- -- 95 -6.61  Oelkers and Schott, 19
97 -- -- 95 -6.48  Oelkers and Schott, 19
97 -- -- 95 -6.91  Oelkers and Schott, 19
97 -- -- 95 -6.59  Oelkers and Schott, 19
97 -- -- 95 -6.54  Oelkers and Schott, 19
97 -- -- 95 -6.80  Oelkers and Schott, 19
97 -- -- 95 -6.64  Oelkers and Schott, 19

 
 
Tab  13. P iocla Dis ion te Pa ters. 

 Acid chan Neu echani  anism 

le lag se solut Ra rame

 Me ism  tral M sm  Base Mech
 g k  a b  E cn alo bE cn  log k E  alog k b

Albite -10.16 .0 7 -1 69  .0 -0.572 65 0.45  2.56 .8  -15.60 71
Olig lase .67 .0 7 -11.84 69 8 -- 
Andesine .88 .5 1 -11.47 57 4 -- 
Labradorite .87 .1 6 -10.91 45.2 -- 
Byt nite .85 .3 8 -9.82 31.5 -- 
Ano ite .50 .6 1 -9.12 17.8 -- 
a. R constan mpute  A and E, 25°C, , mol
b. A nius act n ener  kJ mo
c. R tion orde ith respect to H+

oc -9 65 0.45  .  -- -- 
-8 53 0.54  .  -- -- 
-7 42 0.62   -- -- 

ow -5 29 1.01   -- -- 
rth -3 16 1.41   -- -- 

ate t k co d from  pH = 0 e m-2 s-1

rrhe ivatio gy E, le-1. 
eac r n w

 
 

3.1.2.2 K-feldspar 

Diss ion r data  eva ted f leksey  et  Savage 
(19 ), Bla nd W r (19  Bl d (1999 Blu ), 
Busenberg and Clem y (1  Fe t a ), Gau er e n et al. 
(19 ), Hol  and yer ( 7), ss enhav r (1 ), Manley 
and Evans (1986), Rafal'skiy l. (1 , an  et al. 001 re taken 
directly from Blum a Stilli ec anis  herein for 
the utral hanis rom data (Table 14) in Helgeson et al. ( ic 
mechanism  data (Table 14) in Bevan an ge (19 9), B (1995), 
Gautier et al. (1994), Knauss & Copenhaver ( .  The d rive re 
summarized in Table 15. 

 

 

olut ate  were lua rom A ev al. (1997), Bevan and
89 ke a alte 96), ake an Walter 

l 3
), m and Stillings (1995

enc 976), nter e . (200 ti t al. (1994), Helgeso
84 dren  Spe 198 Knau and Cop e 995), Lagache (1976

 et a 990) d Teng (2 ).  Rate parameters a
nd ngs (1995) for the acidic m h m, and are regressed

 ne mec m f 1984) and for the bas
 from d Sava 8 lum and Stillings 

1995) e d rate parameters a
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Table 14.  K-feldspar Dissolution rate Data. 

aComposition      
an ab or T, °C bpH clog k  Source 
0 16 84 25 4 -8.65  Helgeson et al. 1984 
0 16 84 50 4 -7.54  Helgeson et al. 1984 
0 16 84 100 4 -5.76  Helgeson et al. 1984 
0 16 84 150 4 -4.39  Helgeson et al. 1984 
0 16 84 200 4 -3.3  Helgeson et al. 1984 

eson et al. 1984 
0 16 84 300 4 -1.69  Helgeson et al. 1984 
0 16 84 350 4 -1.07  Helgeson et al. 1984 

 Helgeson et al. 1984 
 Helgeson et al. 1984 

0 200  Helg
0 200  H
0  84 00 -3  H n et a 4 
0 H  et 4 
0 Helgeson et al. 1984 
0 5.64 -9.03  Helgeson et al. 1984 
0 16 84 200 5.64 -3.3  Helgeson et al. 1984 
0 16 84 300 5.65 -8.26  Helgeson et al. 1984 

 Helgeson et al. 1984 
 Helgeson et al. 1984 

0 16 84 150 5.82 -4.39  Helgeson et al. 1984 
0 

 et al. 1984 
0 16 84 100 6.13 -10.18  Helgeson et al. 1984 
0 16 84 100 6.13 -5.76  Helgeson et al. 1984 
0 16 84 50 6.64 -11.01  Helgeson et al. 1984 
0 16 84 50 6.64 -7.54  Helgeson et al. 1984 
0 16 84 25 7 -11.52  Helgeson et al. 1984 
0 16 84 25 7 -8.65  Helgeson et al. 1984 
0 16 84 150 8.94 -7.79  Gautier et al. 1994 
0 16 84 150 8.94 -7.6  Gautier et al. 1994 
-- -- 97 300 9 -6.3  Alekseyev et al. 1997 
-- -- 97 300 9 -6.3  Alekseyev et al. 1997 

0 16 84 250 4 -2.42  Helg

0 16 84 100 4 -6.2 
0 16 84 150 4 -4.38 

16 84 
 84 

 4 -3.52 
-3.27 

eson et al. 1984 
n et a 84 16

16
 
 

4 
4 

elgeso
elgeso

l. 19
 192

2
l. 8

al. 19816 84 50 5 -8.61  
58 -2.42  

 .58 elgeson
16 84 250 5.
16 84 200 

0 16 84 300 5.65 -1.69 
0 16 84 150 5.82 -9.54 

16 84 350 5.91 -7.97  Helgeson et al. 1984 
0 16 84 350 5.91 -1.07  Helgeson et al. 1984 
0 16 84 25 6 -8.65  Helgeson et al. 1984 
0 16 84 50 6 -7.54  Helgeson et al. 1984 
0 16 84 100 6 -5.76  Helgeson et al. 1984 
0 16 84 150 6 -4.39  Helgeson et al. 1984 
0 16 84 200 6 -3.3  Helgeson et al. 1984 
0 16 84 250 6 -2.42  Helgeson et al. 1984 
0 16 84 300 6 -1.69  Helgeson et al. 1984 
0 16 84 350 6 -1.07  Helgeson
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Table 14.  K-feldspar Dissolution rate Data. 

aCompo     sition  
an ab or T, °C pH clo Source b g k  
0 7 93 70 9 -1 Bevan and Savage 1989  2.03  
0 7 93 95 9 -1 Bevan and Savage 1989 
0 7 93 95 9 -1 Bevan and Savage 1989 
0 6 95 70 -1 Knauss and Copenhaver 1995 

a. -- = Not given. 
b. Acid mechanism, pH 4-5.91; tral me , pH 6- bas 4-13. 
c. Log mole m-2 s-1.

 1.63  
 1.72  
 9.51 0.7  

Neu chanism 7; e mechanism, pH 8.9
 

 
 
Table 15. K-F spar issol ate ar

Acid Mechanism Base Mechanism 

eld  D ution R P ameters. 

 Neutral Mechanism  
alog k n alog alog k bE cn bE c  k bE  
-10.06 51.7 00 -12.41 -21.20 94.1 -0.823 0.5  38.0  
a. Rate constant k computed from , 25°C, H =
b. Arrhenius activation energy E, . 
c. Reaction order n with respect to

 A and E  p  0, mole m-2 s-1. 
kJ mole-1

+   H .
 
 

3.1.3 Feldsp

Dissolution rate data for nepheline were evaluated from Brady and Walther (1989), 
ole et al. (1986), 

and for leucite, from Sverdrup (1990).  Data for nepheline were selected from Tole et al. (1993) 
for the acidic and ms b au d rom ex er 
range f tem  ot refe enc  da o  e 3
summarized in Table 16, and the rate parame ermi  lin ar on h us

eters for the basic mechanism for 
 and basic mechanisms for leucite were compiled from Sverdrup 

990) and are summarized in Table 17, with activation energies calculated herein from reported 

athoids: Nepheline and Leucite 

Hamilton et al. (2001), Murphy and Helgeson (1989), Sverdrup (1990), and T

 neutral mechanis ec se they were obtaine  f periments at a wid
 o peratures than the her r es.  The ta from T le t al. (199 ) are 

ters det ned by e regressi erein ing 
eqns. (11) and (12) are given in Table 18.  Rate param
nepheline and acidic, neutral,
(1
rate constants at 8 and 25 °C; the results are also tabulated in Table 18. 
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Table 16.  Nepheline Dissolution Rate Data. 

a blog k  Source T, °C pH 
25 3 -6.30  Tole et al. 1986 
25 3 -6.30  Tole et al. 1986 

-8.24  Tole et al. 1986 

60 11 -7.14  Tole et al. 1986 
a. Acid mechanism, pH 3-5; Neutral mechanism, pH 7-11. 
b. Log mole m-2 s-1. 

60 3 -4.89  Tole et al. 1986 
60 3 -4.89  Tole et al. 1986 
80 3 -4.33  Tole et al. 1986 
80 3 -4.33  Tole et al. 1986 
25 5 -8.24  Tole et al. 1986 
25 5 
60 5 -7.30  Tole et al. 1986 
60 5 -7.30  Tole et al. 1986 
80 5 -6.78  Tole et al. 1986 
80 5 -6.78  Tole et al. 1986 
25 7 -8.62  Tole et al. 1986 
25 7 -8.62  Tole et al. 1986 
60 7 -7.41  Tole et al. 1986 
60 7 -7.41  Tole et al. 1986 
80 7 -6.89  Tole et al. 1986 
25 11 -8.56  Tole et al. 1986 

 
 
Table 17. Leucite Diss te Constants and Reac a. 

 Acid han utral c hanism 

olution Ra tion Orders

 Mec ism  Ne Me hanism  Base Mec
 log k8°C 25°C g k8°C l  k25°C

bn log k bn  lo og k25°C  log k8°C log
Leuc -10.40 .0  3.00 0.8 -0.200 ite -9 0.700  -1 -12.2  -11.40 -1

a. Data fr rdrup, 1990;  units, lo le m-2 s
b. Reacti r n with respe +. 

om Sve
on orde

 log k
ct to H

g mo -1. 

 
 
Table 18. Feldspath  Disso ion R aram te

 Acid hanis utral ec Base Mechanism 

oid lut ate P e rs.  

 Mec m  Ne M hanism  
 alog k  alog k bE cn bE cn  alog k bE  

Nephel -2.73 62.9 30 8.56 -10.76 37.8 -0.200 ine 1.1  - 65.4  
Leucite -6.00 .2 00 .20 -10.66 56.6 -0.200 
a. Rate constant k computed  pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy  mole-1. 
c. Reaction order n with respe +. 

132 0.7  -9 75.5  
from A and E, 25°C,
 E, kJ
ct to H
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3.2 Orthosilicates 

3. rou

lution ra ta  fo ivine valua d . (2000), Bailey (1974), 
Blum a saga (198  Chen  Bran 000) r ), Jonckbloedt (1998), 
Luce (1972), Murphy and Helgeson (1987; 1989), Oelkers (2001a), Pokrovsky and Schott 
(2000b), Pokrovsky and Schott (2000a), Rosso and Rim erdrup (1990), Van Herk 
et al. (1989), Westrich al. (19 , Wo and W lth ogelius and Walther 
(1992) and Xiao et al. (1999). 

lution ra ta we electe forste te  Brantley (2000), Oelkers 
(2001a rovsky an chott 00b), vsky d , and Wogelius and 
Walthe 2); these a are s mariz able 9. anism for forsterite 
apparently operates at pH up to ~9, and there appare tly .  Rate parameters 
for the acidic and neutral mecha ms w
summarized in Table 20.  Rate parameters for the ac ic r fayalite is compiled from 
Sverdr 90; Tabl ), wi ivati rgies alc  rate 
constan 8 and 25 for th tral nism, a “cut-off” rate constant at 25 °C was 
calcula  that rate  not ase w  incr si on energy is 
set equal to the acidic hani The rame rs ized in Table 
20. 
 
 
Table orsterite ssolu Rate . 

Com ion T,  

2.1 Olivine G p 

Disso te da r ol were e te from Awad et al
nd La 6), and tley (2 , G andstaff (1986

stidt (2000), Sv
 et 93) gelius a er, (1991), W

Disso te da re s d for ri from Chen and
), Pok d S (20  Pokro an Schott (2000a)
r (199  dat um ed in T  1  The acidic mech

n  is no basic mechanism
nis ere regressed using eqn. (11), and the results are 

id  mechanism fo
up (19 e 20 th act on ene  c ulated herein from reported
ts at °C; e neu mecha
ted so s do decre ith pH ea ng above 9, and the activati

 mec sm.  rate pa te for fayalite are also summar

19.  F  Di tion  Data

posit °C apH blog k  Source 
fo91 25 1.03 -7.23  Pokrovsky and Schott, 2000 
fo91 25 1.11 -7.33  Pokrovsky and Schott, 2000 

0 fo91 25 1.12 -7.28  Pokrovsky and Schott, 200
fo91 65 1.8 -6.29  Wogelius and Walther, 1992 
fo91 25 2 -7.80  Oelkers, 2001 
fo91 25 2 -7.75  Oelkers, 2001 
fo91 25 2 -7.92  Oelkers, 2001 
fo91 25 2 -7.91  Oelkers, 2001 
fo91 25 2 -7.85  Oelkers, 2001 
fo91 25 2 -7.81  Oelkers, 2001 
fo91 25 2 -7.98  Oelkers, 2001 
fo91 25 2 -7.88  Oelkers, 2001 
fo91 25 2 -7.88  Oelkers, 2001 
fo91 25 2 -7.90  Oelkers, 2001 
fo91 25 2 -7.89  Oelkers, 2001 
fo91 25 2 -7.92  Oelkers, 2001 
fo91 25 2 -7.90  Oelkers, 2001 
fo91 25 2 -7.91  Oelkers, 2001 
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Table 19.  Forsterite Dissolution Rate Data - continued. 

Com ion T,  posit °C apH blog k  Source 
fo91 25 2 -7.87  Oelkers, 2001 
fo91 25 2 -7.93  Oelkers, 2001 
fo91 25 2 -7.91  Oelkers, 2001 
fo91 25 2 -7.93  Oelkers, 2001 
fo91 25 2 -7.89  Oelkers, 2001 
fo91 25 2 -7.99  Oelkers, 2001 
fo91 25 2 -7.89  Oelkers, 2001 
fo91 25 2 -7.92  Oelkers, 2001 
fo91 35 2 -7.58  Oelkers, 2001 
fo91 45 2 -7.03  Oelkers, 2001 
fo91 55 2 -6.97  Oelkers, 2001 
fo91 65 2 -6.09  Chen and Brantley, 2000 
fo91 65 2 -6.57  Oelkers, 2001 
fo91 25 2.13 -7.70  Pokrovsky and Schott, 2000 
fo91 25 2.18 -7.71  Pokrovsky and Schott, 2000 
fo91 25 2.21 -7.72  Pokrovsky and Schott, 2000 
fo91 25 2.7 -7.73  Pokrovsky and Schott, 2000 
fo91 25 2.74 -7.83  Pokrovsky and Schott, 2000 
fo91 25 2.81 -7.82  Pokrovsky and Schott, 2000 
fo91 25 2.82 -7.89  Pokrovsky and Schott, 2000 
fo91 25 2.85 -8.30  Pokrovsky and Schott, 2000 
f091 65 2.95 -6.76  Chen and Brantley, 2000 
f091 65 2.95 -6.83  Chen and Brantley, 2000 
f091 65 2.95 -6.85  Chen and Brantley, 2000 
f091 65 2.95 -6.82  Chen and Brantley, 2000 
fo91 65 2.95 -6.68  Chen and Brantley, 2000 
fo91 25 2.99 -7.93  Pokrovsky and Schott, 2000 
fo91 25 3.03 -7.97  Pokrovsky and Schott, 2000 
fo91 25 3.05 -8.18  Pokrovsky and Schott, 2000 
fo91 25 3.05 -8.28  Pokrovsky and Schott, 2000 
fo91 25 3.08 -8.14  Pokrovsky and Schott, 2000 
fo91 25 3.16 -8.25  Pokrovsky and Schott, 2000 
fo91 25 3.26 -8.34  Pokrovsky and Schott, 2000 
fo91 25 3.34 -8.55  Pokrovsky and Schott, 2000 
fo91 25 3.6 -8.80  Pokrovsky and Schott, 2000 
f091 65 4 -7.60  Chen and Brantley, 2000 
fo91 25 4.15 -9.03  Pokrovsky and Schott, 2000 
fo91 25 4.2 -8.69  Pokrovsky and Schott, 2000 
fo91 25 4.22 -8.78  Pokrovsky and Schott, 2000 
fo91 25 4.41 -8.80  Pokrovsky and Schott, 2000 
fo91 25 4.49 -8.98  Pokrovsky and Schott, 2000 
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Table 19.  Forsterite Dissolution Rate Data - continued. 

Composition T, °C apH blog k  Source 
fo91 25 4.55 -9.03  Pokrovsky and Schott, 2000 
fo91 25 4.77 -8.98  Pokrovsky and Schott, 2000 
fo91 25 4.85 -9.02  Pokrovsky and Schott, 2000 
fo91 25 4.95 -9.15  Pokrovsky and Schott, 2000 
f091 65 5 -7.92  Chen and Brantley, 2000 
fo91 25 5.4 -9.31  Pokrovsky and Schott, 2000 
fo91 25 5.44 -9.47  Pokrovsky and Schott, 2000 
fo91 25 5.44 -9.47  Pokrovsky and Schott, 2000 
fo91 25 5.47 -9.57  Pokrovsky and Schott, 2000 
fo91 25 5.61 -9.79  Pokrovsky and Schott, 2000 
fo91 25 5.7 -9.49  Pokrovsky and Schott, 2000 

65 6 -8.13  Wogelius/Walther, 1992 
fo91 25 6.13 -9.92  Pokrovsky and Schott, 2000 

 
 

fo91 -10.04 
fo91 .9 y nd 
fo91 7.1 0.1  ky nd 00

 2 7. 0.04  Pokrovsky and Schott, 2000 
 2 7. .88  Pokrovsky and Schott, 2000 

1 2 7. .93  Pokrovsky and Schott, 2000 
1 2 7 0.47  Pokrovsky and Schott, 2000 
1 2 7 0.57  P sky nd S 2000

fo91 2 7. 0.39  Pokrovsky and Schott, 2000 
.13  Pokrovsky and Schott, 2000 

fo91 25 8.13 -10.33  Pokrovsky and Schott, 2000 
fo91 25 8.38 -10.18  Pokrovsky and Schott, 2000 

8.5 -10.33  Pokrovsky and Schott, 2000 
 8.53 -10.17  Pokrovsky and Schott, 2000 

fo91 25 8.55 -10.42  Pokrovsky and Schott, 2000 

9.3 -10.49  Pokrovsky and Schott, 2000 
fo91 25 9.58 -10.54  Pokrovsky and Schott, 2000 
fo91 25 10.08 -10.79  Pokrovsky and Schott, 2000 
fo91 25 10.24 -10.72  Pokrovsky and Schott, 2000 
fo91 25 10.76 -10.38  Pokrovsky and Schott, 2000 
fo91 25 10.78 -10.95  Pokrovsky and Schott, 2000 
fo91 25 10.85 -10.31  Pokrovsky and Schott, 2000 

fo91 

fo91 25 6.18 -9.60  Pokrovsky and Schott, 2000
fo91 25 6.28 -9.72  Pokrovsky and Schott, 2000

25 6.39 
25 6.6 

 Pokrovsky and Schott, 2000 
7  Pokrovsk-9  a Sch

 Schott, 2
ott, 2000 

25 9 -1 1 Pokrovs  a 0 
fo91
fo91

5 21 -1  
 5 25 -9

fo9 5 33 -9  
fo9 5 .6 -1  
fo9 5 .9 -1  okrov  a chott,  

5 98 -1
fo91 25 8.02 -10

fo91 25 
fo91 25

fo91 25 8.55 -10.40  Pokrovsky and Schott, 2000 
fo91 25 8.63 -10.44  Pokrovsky and Schott, 2000 
fo91 25 8.68 -10.46  Pokrovsky and Schott, 2000 
fo91 25 8.71 -10.60  Pokrovsky and Schott, 2000 
fo91 25 
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Table 19.  Forsterite Dissolution Rate Data - continued. 

Composi a btion T, °C pH log k  Source 
fo91 25 10.9 -10.44  Pokrovsky and Schott, 2000 
fo91 25 10.9 -10.69  Pokrovsky and Schott, 2000 
fo91 25 10.95 -10.60  Pokrovsky and Schott, 2000 
fo91 25 11.01 -10.57  Pokrovsky and Schott, 2000 
fo91 25 11.1 -10.65  Pokrovsky and Schott, 2000 

91 25 11.11 -10.56  Pokrovsky and Schott, 2000 
 Pokrovsky and Schott, 2000 

fo91 25 11.13 -10.71  Pokrovsky and Schott, 2000 
fo91 25 11.15 0.57  sky a chott,
fo91 25 0.85  P vsky a hott, 

a. Acid mechanism, pH 1.03-8.71;  mech H 9.3-12 . 
b. Log mole m-2 s-1. 

fo
fo91 25 11.12 -10.52 

 -1 Pokrov nd S  2000 
12.06 -1 okro nd Sc 2000 

 Neutral anism, p .06

 

Table 20. Orth cate lutio te Con tants a eac rde

 Acid Mechanism Neutral Mech   Bas hanism 

osili  Disso n Ra s nd R tion O rs . a

 anism e Mec
 log log bn  log 8°C lo °C  log k8°C  k25°C

bn k8°C k25°C k g k25 log
Fayalite -4.8 1.0 --  -- -- -- -5.8  -- 
Almandine -6.2 -5.2 1. -11.8   9.1 -0.3 
Grossular -6 -5.1 1.0 -11.8   -- -- -- 
Andradite -6.2 -5.2 1. -11.8   -- -- -- 
Staurolite -7.1 -6.9 1. -12.8   1.1 0.6 -0.3 
Zoisite -7 0.5 -  -- -- -- 
a. Data from Sverdru 0; log k og mo
b. Reaction order n w pect to

0  -10.7 - -8.7 
 -10.7

0  -10.7
0  -12.2 -1 -1

-8.2 .5  
-2 -1

- -- 
p, 199
ith res

 units, l
 H

le m  s . 
+. 

 
 

3.2.2 Garnet Group 

Rate pa ters for the acidic, neutral, and basic mechanisms for almandine, and acidic 
and neutral mechanisms (data are absent for the basic mechanism) for grossular and andradite are 
compiled from Sverdrup (1990; Table 20), with activation energies calculated herein from 
reported rate constants at 8 and 25 °C.  The rate parameters for the garnet group minerals are 
summarized in Table 22. 
 
 

rame
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3.2.3 Al2SiO5 Group 

Dissolution rate data for kyanite were obtained from Oelkers and Schott (1999; Table 21) 
for the acidic mechanism only.  The rate parameters are regressed herein using eqn. (11), and are 
summarized in Table 23.  For the neutral mechanism, a “cut-off” rate constant at 25 °C was 
calculated so that rates do not decrease with pH increasing above 7, and the activation energy is 
set equal to that for the acidic mechanism. 

 
Table 21.  Kyanite Dissolution Rate Data. 

T, °C pH alog k  T, °C pH alog k 
150 1.65 -9.63  150 2.04 -9.87 
150 1.65 -9.55  150 2.04 -9.87 
150 1.65 -9.42  150 2.04 -9.86 
150 1.85 -9.84  150 2.04 -9.79 
150 1.85 -9.66  150 2.04 -9.88 
150 1.85 -9.65  150 2.04 -9.79 
108 2.03 -10.96  150 2.04 -9.82 
108 2.03 -10.96  131 2.04 -9.98 
111 2.03 -10.54  174 2.06 -9.89 
113 2.03 -10.28  175 2.06 -9.67 
121 2.03 -10.48  175 2.06 -9.69 
121 2.03 -10.48  175 2.06 -9.62 
121 2.03 -10.66  175 2.06 -9.69 
122 2.03 -10.48  175 2.06 -9.61 
125 2.03 -10.40  175 2.06 -9.56 
125 2.03 -10.34  175 2.06 -9.77 
125 2.03 -10.28  194 2.07 -9.46 
126 2.03 -10.40  194 2.07 -9.27 
126 2.03 -10.29  150 2.24 -10.40 
150 2.04 -9.86  150 2.24 -10.24 
150 2.04 -9.92  150 2.24 -10.21 
150 2.04 -9.84  150 2.24 -10.37 

a. Log mole m-2 s-1. 
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3.2.4 Staurolite 

Rate parameters for the acidic, neutral, and basic mechanisms for staurolite were 
compiled from Sverdrup (1990; Table 20), with activation energies calculated herein from 
reported rate constants at 8 and 25 °C.  The rate parameters for the staurolite are summarized in 
Table 23. 
 
 

3.2.5 Epidote Group 

Dissolution rate data for epidote and zoisite were evaluated from Rose (1991), 
Kalinowski et al. (1998), and Sverdrup (1990).  Data for the acidic, neutral, and basic 
mechanisms for epidote from Rose (1991), and Kalinowski et al. (1998) were selected, and are 
tabulated in Table 22. The rate parameters for epidote are regressed herein using eqn. (11), and 
are summarized in Table 23.  Rate parameters for the acidic mechanism for zoisite was compiled 
from Sverdrup (1990; Table 20), with the activation energy calculated herein from reported rate 
constants at 8 and 25 °C; for the neutral mechanism, a “cut-off” rate constant at 25 °C was 
calculated so that rates do not decrease with pH increasing above 7, and the activation energy is 
set equal to the acidic mechanism.  The rate parameters for zoisite are summarized in Table 23. 
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Table 22.  Epidote Dissolution Rate Data. 
 

T, °C apH blog k Source 
25 0.2 -10.23 Kalinowski et al. 1998 
25 1.08 -10.49 Kalinowski et al. 1998 
25 1.29 -11.31 Kalinowski et al. 1998 
90 1.29 -8.715 Rose 1991 
25 1.4 -11.53 Kalinowski et al. 1998 
25 1.4 -11.528 Rose 1991 
50 1.4 -10.322 Rose 1991 
70 1.4 -9.268 Rose 1991 
70 1.4 -9.63 Rose 1991 
70 1.4 -9.677 Rose 1991 
90 1.4 -8.9 Rose 1991 
25 1.99 -11.19 Kalinowski et al. 1998 
25 2.01 -10.73 Kalinowski et al. 1998 
25 2.5 -11.8 Kalinowski et al. 1998 
90 2.5 -9.2 Rose 1991 
90 2.5 -9.269 Rose 1991 
25 2.98 -11.36 Kalinowski et al. 1998 
25 2.99 -11.63 Kalinowski et al. 1998 
25 3 -11.64 Kalinowski et al. 1998 
25 3.03 -11.42 Kalinowski et al. 1998 
25 3.47 -12.02 Kalinowski et al. 1998 
90 3.47 -9.424 Rose 1991 
90 3.47 -9.424 Rose 1991 
90 3.47 -9.528 Rose 1991 
25 4.02 -12.19 Kalinowski et al. 1998 
25 4.05 -11.72 Kalinowski et al. 1998 
25 4.05 -12 Kalinowski et al. 1998 
25 4.12 -11.65 Kalinowski et al. 1998 
25 4.38 -12.17 Kalinowski et al. 1998 
90 4.38 -9.578 Rose 1991 
25 5.5 -12.15 Kalinowski et al. 1998 
90 5.5 -9.55 Rose 1991 
25 5.6 -11.8 Kalinowski et al. 1998 
25 6.48 -12.29 Kalinowski et al. 1998 
25 6.5 -11.93 Kalinowski et al. 1998 
90 6.62 -9.795 Rose 1991 
90 7.75 -9.892 Rose 1991 
90 8.64 -10.048 Rose 1991 
90 10.83 -8.831 Rose 1991 
25 10.6 -11.44 Kalinowski et al. 1998 

a. Acid mechanism, pH 1.2 – 4.38; Neutral mechanism, pH 5.5-7.75; basic 
mechanism, 8.64-10.8. 
b. Log mole m-2 s-1. 

 

 34 



Table 23. Orthosilicate Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism  Base Mechanism 
 alog k bE cn  alog k bE  alog k bE cn 

Forsterite -6.85 67.2 0.470  -10.64 79.0  -- -- -- 
Fayalite -4.80 94.4   -12.80 94.4  -- -- -- 
Almandine -5.20 94.4 1.000  -10.70 103.8  -13.71 37.8 -0.350 
Grossular -5.10 85.0 1.000  -10.70 103.8  -- -- -- 
Andradite -5.20 94.4 1.000  -10.70 103.8  -- -- -- 
Kyanite -10.17 -53.9 1.268  -17.44 53.9  -- -- -- 
Staurolite -6.90 18.9 1.000  -12.20 56.6  -14.90 47.2 -0.300 
Epidote -10.60 71.1 0.338  -11.99 70.7  -17.33 79.1 -0.556 
Zoisite -7.50 66.1 0.500  -11.20 66.1  -- -- -- 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
 
 

3.3 Cyclosilicates 

3.3.1 Cordierite and Tourmaline 

Rate parameters for the acidic and neutral mechanisms (data are absent for the basic 
mechanism) for cordierite and tourmaline were compiled from Sverdrup (1990; Table 24), with 
activation energies calculated herein from reported rate constants at 8 and 25 °C.  The rate 
parameters for the garnet group minerals are summarized in Table 22. 
 
 
Table 24. Cyclosilicate Dissolution Rate Constants and Reaction Ordersa. 

 Acid Mechanism  Neutral Mechanism 
 log k8°C log k25°C

bn  log k8°C log k25°C

Cordierite -5.0 -3.8 1.000  -11.5 -11.2 
Tourmaline -7.3 -6.5 1.000  -12.1 -11.2 
a. Data from Sverdrup, 1990; log k units, log mole m-2 s-1. 
b. Reaction order n with respect to H+. 
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Table 25. Cyclosilicate Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 
 alog k bE cn  alog k bE 
Cordierite -3.80 113.3 1.000  -11.20 28.3 
Tourmaline -6.50 75.5 1.000  -11.20 85.0 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 

 
 

3.4 Inosilicates 

3.4.1 Pyroxene Group / Pyroxenoid Group 

Dissolution rate data for pyroxenes and pyroxenoids were evaluated from Bailey (1974), 
Brantley and Chen (1995), Chen and Brantley (1998), Knauss et al. (1993), Murphy and 
Helgeson (1987; 1989), Rimstidt and Dove (1986), Schott and Berner (1985), Schott et al. 
(1981), Siegel and Pfannkuch (1984), Sverdrup (1990), and Weissbart (2000). 

Dissolution rate data for the acidic and neutral mechanisms (data are absent for the basic 
mechanism) were selected as follows: augite, from Schott et al. (1981) and Sverdrup (1990); 
bronzite, from Sverdrup (1990); diopside, from Brantley and Chen (1995), Chen and Brantley 
(1998), Knauss et al. (1993), and Schott and Berner (1985); enstatite, from Schott and Berner 
(1985); jadeite, from Sverdrup (1990); spodumene, from Sverdrup (1990); wollastonite, from 
Murphy and Helgeson (1987; 1989) and Rimstidt and Dove (1986).  The rate parameters were 
regressed using eqn. (11), except for the bronzite data from Sverdrup (1990), for which rate 
constants at 8 and 25 °C for single mechanisms are used herein to calculate the activation energy.  
The resulting rate parameters are summarized in Table 26. 

For enstatite and augite, the available data are limited to pH less than ~7.  Although rates 
may decrease further with further pH increase above 7, a “cut-off” rate constant at 25 °C was 
calculated for the neutral mechanism so that rates do not decrease with pH increasing above 7, 
and the activation energy is set equal to the acidic mechanism. 
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Table 26. Pyroxene and Pyroxenoid Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 
 alog k bE cn  alog k bE 

augite -6.82 78.0 0.700  -11.97 78.0 
bronzite -8.30 47.2 0.650  -11.70 66.1 
diopside -6.36 96.1 0.710  -11.11 40.6 
enstatite -9.02 80.0 0.600  -12.72 80.0 
jadeite -6.00 132.2 0.700  -9.50 94.4 
spodumene -4.60 94.4 0.700  -9.30 66.1 
wollastonite -5.37 54.7 0.400  -8.88 54.7 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 

 
 

3.4.2 Amphibole Group 

Dissolution rate data for amphiboles were evaluated from Brantley and Chen (1995), 
Chen and Brantley (1998), Sverdrup (1990), and Zhang and Bloom (1999).  Data for the acidic 
and neutral mechanisms (data are absent for the basic mechanism) were selected as follows: 
anthophyllite, from Chen and Brantley (1998); glaucophane, hornblende, riebeckite and 
tremolite, from Sverdrup (1990).  The rate parameters were regressed using eqn. (11), except for 
the data from Sverdrup (1990), for which rate constants at 8 and 25 °C for single mechanisms are 
used herein to calculate the activation energy.  The resulting rate parameters are summarized in 
Table 27. 

 
Table 27. Amphibole Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 
 alog k bE cn  alog k bE 
anthophyllite -11.94 51.0 0.440  -14.24 51.0 
glaucophane -5.60 85.0 0.700  -10.10 94.4 
hornblende -7.00 75.5 0.600  -10.30 94.4 
riebeckite -7.70 56.6 0.700  -12.20 47.2 
tremolite -8.40 18.9 0.700  -10.60 94.4 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
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3.5 Phyllosilicates 

3.5.1 Mica Group 

Dissolution rate data for the micas were evaluated from Acker and Bricker (1992), 
Clemency and Lin (1981), Kalinowski and Schweda (1996), Knauss and Wolery (1989), 
Kuwahara and Aoke (1999), Lin and Clemency (1981a; 1981b), Malmstrom and Banwart 
(1997), Nagy (1995), Robie (1976), Sverdrup (1990), Swoboda-Colberg and Drever (1993), 
Taylor et al. (2000b), and Trotignon and Turpault (1992). 

Data were selected as follows: biotite, from Acker and Bricker (1992) and Nagy (1995); 
glauconite, from Sverdrup (1990); muscovite, paragonite, phlogopite and pyrophyllite, from 
Nagy (1995).  The rate parameters were regressed using eqn. (11), except for the data from 
Sverdrup (1990), for which rate constants at 8 and 25 °C for single mechanisms are used herein 
to calculate the activation energy.  The compiled rate parameters are summarized in Table 28. 
 
 
Table 28. Orthosilicate Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism  Base Mechanism 
 alog k bE cn  alog k bE  alog k bE cn 
biotite -9.84 22.0 0.525  -12.55 22.0  -- -- -- 
glauconite -4.80 85.0 0.700  -9.10 85.0  -- -- -- 
muscovite -11.85 22.0 0.370  -13.55 22.0  -14.55 22.0 -0.220 
muscovite -- -- --  -13.00 22.0  -- -- -- 
paragonite -- -- --  -13.00 22.0  -- -- -- 
phlogopite -- -- --  -12.40 29.0  -- -- -- 
pyrophyllite -- -- --  -12.40 29.0  -- -- -- 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
 

3.5.2 Clay Group 

Dissolution rate data for three additional clay group minerals were evaluated: kaolinite 
(Bauer and Berger, 1998; Cama et al., 2002; Carroll and Walther, 1990; Carroll-Webb and 
Walther, 1988; Devidal et al., 1997; Ganor et al., 1995; Hayashi and Yamada, 1990; Huertas et 
al., 1999a; Huertas et al., 2001b; Huertas et al., 1999b; Metz and Ganor, 2001; Nagy, 1995; Nagy 
et al., 1991; Nagy and Lasaga, 1990; Nagy and Lasaga, 1993; Oelkers et al., 2001; Polzer and 
Hem, 1965; Soong, 1993; Soong and Barnes, 1991; Sutheimer et al., 1999; Wieland and Stumm, 
1992); montmorillonite (Furrer et al., 1993; Hayashi and Yamada, 1990; Huertas et al., 2001a; 
Nagy, 1995; Zysset and Schindler, 1996); and smectite (Altaner, 1986; Bauer and Berger, 1998; 
Cama et al., 2000; Cama et al., 1994; Novák and Cícel, 1978). 

Data for the clay group minerals were selected as follows: kaolinite, from Carroll and 
Walther (1990), Ganor et al. (1995), Huertas et al. (1999a), Huertas et al. (1999b), Nagy et al. 
(1991), Soong (1993); montmorillonite, from Nagy (1995); smectite, from Bauer and Berger 
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(1998), Huertas et al. (2001a), Sverdrup (1990), and Zysset and Schindler (1996).  The rate 
parameters were regressed using eqn. (11), except for the data from Sverdrup (1990), for which 
rate constants at 8 and 25 °C for single mechanisms are used herein to calculate the activation 
energy.  The compiled rate parameters are summarized in Table 29.  Nagy et al. (1991) have 
quantified the chemical affinity parameters for kaolinite at 80 °C and pH = 3; with the 
experimental uncertainty, the experimental data can be fit to eqn. (4) with either p = 1.000 and q 
= 0.897, or p = 0.850 and q = 1.000. 
 
 
Table 29. Clay Group Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism  Base Mechanism 
 alog k bE cn  alog k bE  alog k bE cn 
kaolinite -11.31 65.9 0.777  -13.18 22.2  -17.05 17.9 -0.472 
dmontmorillonite -12.71 48.0 0.220  -14.41 48.0  -14.41 48. -0.130 
esmecite -10.98 23.6 0.340  -12.78 35.0  -16.52 58.9 -0.400 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
d. Montmorillonite, K0.318(Si3.975Al0.025)(Al1.509Fe0.205Mg0.283)(OH)2. 
e. Smectite, K0.04Ca0.5(Al2.8Fe0.53Mg0.7)(Si7.65Al0.35)O20(OH)4. 
 
 

3.5.3 Miscellaneous Phyllosilicates 

Dissolution rate data for several miscellaneous phyllosilicate minerals were evaluated: 
serpentine (Bales and Morgan, 1985; Cetisli and Gedikbey, 1990; Gronow, 1987; Hume and 
Rimstidt, 1992; Lin and Clemency, 1981b; Nagy, 1995; Sverdrup, 1990; Thomassin et al., 1977), 
chlorite (Hayashi and Yamada, 1990; Johnson et al., 2001; Nagy, 1995; Sverdrup, 1990), talc 
(Lin and Clemency, 1981b; Nagy, 1995), and prehnite (Rose, 1991). 

Data for these phyllosilicate minerals were selected as follows: lizardite serpentine, from 
Sverdrup (1990); chrysotile serpentine, from Nagy (1995); chlorite, from Nagy (1995); talc, from 
Nagy (1995); and prehnite, from Rose (1991).  The compiled parameters are summarized in 
Table 30. 
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Table 30. Miscellaneous Phyllosilicate Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism  Base Mechanism 
 alog k bE cn  alog k bE  alog k bE cn 
lizardite -5.70 75.5 0.800  -12.40 56.6  -- -- -- 
chrysotile -- -- --  -12.00 73.5  -13.58 73.5 -0.230 
dchlorite -11.11 88.0 0.500  -12.52 88.0  -- -- -- 
talc -- -- --  -12.00 42.0  -- -- -- 
prehnite -10.66 80.5 0.256  -13.16 93.4  -14.86 93.4 -0.200 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
d. Clinochlore 14 Å. 
 
 

3.6 Oxides 

Dissolution rate data for several oxide minerals were evaluated: goethite (Ruan and 
Gilkes, 1995), hematite (Bruno and Duro, 2000; Bruno et al., 1992; Hummel, 2000; Petrie, 1995; 
Ruan and Gilkes, 1995), ilmenite (White et al., 1994), magnetite (White et al., 1994), manganite 
(Petrie, 1995), pyrolusite (Petrie, 1995), and uraninite (Grandstaff, 1976).  Data for the oxide 
minerals were selected as follows: goethite, from Ruan and Gilkes (1995); hematite, Ruan and 
Gilkes (1995); ilmenite, White et al. (1994); magnetite, White et al. (1994); pyrolusite, Petrie 
(1995); and uraninite Grandstaff (1976).  The compiled parameters are summarized in Table 31. 
 
 
Table 31. Oxide Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 
 alog k bE cn  alog k bE 
goethite -- -- --  -7.94 86.5 
hematite -9.39 66.2 1.000  -14.60 66.2 
magnetite -8.59 18.6 0.279  -10.78 18.6 
ilmenite -8.35 37.9 0.421  -11.16 37.9 
uraninite -- -- --  -7.98 32.0 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
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3.7 Hydroxides 

Dissolution rate data for brucite (Jordan and Rammensee, 1996; Lin and Clemency, 
1981b; Nagy, 1995; Sverdrup, 1990), gibbsite (Bloom, 1983; Bloom and Erich, 1987; Chang et 
al., 1979; Ganor et al., 1999; Mogollón et al., 1996; Mogollón et al., 2000; Nagy, 1995; Nagy 
and Lasaga, 1990; Nagy and Lasaga, 1992; Nagy and Lasaga, 1993; Packter and Dhillon, 1974; 
Scotford and Glastonbury, 1972a; Scotford and Glastonbury, 1972b), and diaspore (Chang et al., 
1979) were evaluated.  Data for brucite were selected from Nagy (1995) and Jordan and 
Rammensee (1996).  Data for gibbsite were selected from Nagy and Lasaga (1992) and Packter 
and Dhillon (1974). The compiled parameters are summarized in Table 32. 
 
 
Table 32. Hydroxide Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism  Base Mechanism 
 alog k bE cn  alog k bE  alog k bE cn 
brucite -4.73 59.0 0.500  -8.24 42.0  -- -- -- 
gibbsite -7.65 47.5 0.992  -11.50 61.2  -16.65 80.1 -0.784 
diaspore -- -- --  -13.33 47.5  -23.60 47.5 -1.503 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
 
 

3.8 Carbonates 

Dissolution rate data for four carbonate minerals were evaluated: calcite (Alkattan et al., 
1998; Alkattan et al., 2002; Berner and Morse, 1974; Brown et al., 1993; Busenberg and 
Plummer, 1986; Chou et al., 1989; Deleuze and Brantley, 1997; House, 1981; Inskeep and 
Bloom, 1985; Jeschke and Dreybrodt, 2002b; Jiménez-López et al., 2001; Jordan and 
Rammensee, 1998; Lebrón and Suárez, 1996; Lebrón and Suárez, 1998; MacInnis and Brantley, 
1992; Maldonado et al., 1992; Morse, 1978; Mucci, 1986; Mucci and Morse, 1983; Plummer and 
Wigley, 1976; Plummer et al., 1978; Plummer et al., 1979; Reddy, 1986; Reddy and Gaillard, 
1981; Reddy et al., 1981; Schott et al., 1989; Shiraki and Brantley, 1995; Sjöberg, 1976; Sjöberg 
and Rickard, 1983; Sjöberg and Rickard, 1984a; Sjöberg and Rickard, 1984b; Sjöberg and 
Rickard, 1985; Talman et al., 1990; Teng et al., 2000; Zhang and Dawe, 1998; Zhang and Dawe, 
2000; Zhong and Mucci, 1989; Zhong and Mucci, 1993; Zuddas and Mucci, 1994; Zuddas and 
Mucci, 1998); dawsonite (Johnson et al., 2001); dolomite (Arvidson and Mackenzie, 1999; Baker 
and Kastner, 1981a; Baker and Kastner, 1981b; Busenberg and Plummer, 1982; Busenberg and 
Plummer, 1986; Chou et al., 1989; Gaines, 1980; Gautelier et al., 1999; Katz and Matthews, 
1977; Lüttge et al., 2003; Nordeng and Sibley, 1994; Sibley et al., 1987); magnesite (Chou et al., 
1989; Higgins et al., 2002; Johnson et al., 2001; Jordan et al., 2001; Pokrovsky and Schott, 
1999); and siderite (Greenberg and Tomson, 1992; Jensen et al., 2002). 

Data for the carbonate minerals were selected as follows: calcite, from Plummer et al. 
(1978) and Talman et al. (1990); dawsonite, Johnson et al. (2001); dolomite, Busenberg and 
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Plummer (1982); and magnesite, Chou et al. (1989) and Pokrovsky and Schott (1999).  The rate 
parameters were regressed using eqn. (11), and are summarized in Table 33.  In the absence of 
data for the activation energy for magnesite dissolution, the activation energy of calcite is 
assigned to magnesite.  Pokrovsky and Schott (1999) have quantified the chemical affinity 
parameters for magnesite at 25 °C with pH ranging from 0.2 to 12, with p = 4.00 and q = 1.00. 
 
 
Table 33. Carbonate Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism  Carbonate Mechanism 
 alog k bE cn  alog k bE  alog k bE dn 
calcite -0.30 14.4 1.000  -5.81 23.5  -3.48 35.4 1.000 
dawsonite -- -- --  -7.00 62.8  -- -- -- 
edolomite -3.19 36.1 0.500  -7.53 52.2  -5.11 34.8 0.500 
fdolomite -3.76 56.7 0.500  -8.60 95.3  -5.37 45.7 0.500 
magnesite -6.38 14.4 1.000  -9.34 23.5  -5.22 62.8 1.000 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
d. Reaction order n with respect to P(CO2). 
e. Sedimentary (disordered) dolomite. 
f. Hydrothermal (ordered) dolomite. 
 
 

3.9 Sulfates 

Dissolution rate data for several sulfate minerals were evaluated: anhydrite (Barton and 
Wilde, 1971; Bildstein et al., 2001; Dove and Czank, 1995; Jeschke and Dreybrodt, 2002b); 
anglesite (Dove and Czank, 1995); barite (Christy and Putnis, 1993; Dove and Czank, 1995; 
Kornicker et al., 1991); celestite (Dove and Czank, 1995); and gypsum (Jeschke et al., 2001; 
Raines and Dewers, 1997).  Data for the sulfate minerals were selected as follows: anhydrite, 
from Barton and Wilde (1971) and Dove and Czank (1995); anglesite, barite and celestite, from 
Dove and Czank (1995); and gypsum, from Raines and Dewers (1997).  The rate parameters 
were regressed using eqn. (11), and are summarized in Table 34.  Date were insufficient to 
calculate activation energies for the neutral mechanism for gypsum, and the acidic mechanisms 
for anglesite and barite; activation energies for the neutral mechanisms for anglesite and barite 
are assigned to the respective acidic mechanisms.  The acidic mechanism for celestite apparently 
extends to alkaline pH, and there is no evident neutral mechanism. 
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Table 34. Sulfate Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 
 alog k bE cn  alog k bE 
anglesite -5.58 31.3 0.298  -6.50 31.3 
anhydrite -- -- --  -3.19 14.3 
gypsum -- -- --  -2.79 0 
barite -6.90 30.8 0.220  -7.90 30.8 
celestite -5.66 23.8 0.109  -- -- 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 

3.10 Sulfides 

Dissolution rate data for several sulfide minerals were evaluated: AsS, amorphous 
(Lengke and Tempel, 2003); As2S3, amorphous (Lengke and Tempel, 2001); Orpiment and 
As2S3, amorphous (Lengke and Tempel, 2002); pyrite (Gibbs et al., 1997a; Gibbs et al., 1997b; 
Holmes and Crundwell, 2000; Kamei and Ohmoto, 2000; Lennie and Vaughan, 1992; McKibben 
and Barnes, 1986; Moses and Herman, 1991; Moses et al., 1987; Nicholson et al., 1988; 
Nicholson et al., 1990; Rickard, 1997; Rickard and Luther, 1997; Rickard, 1975; Rimstidt and 
Vaughan, 2003; Schoonen and Barnes, 1991a; Schoonen and Barnes, 1991b; Schoonen and 
Barnes, 1991c; Wiersma and Rimstidt, 1984; Williamson and Rimstidt, 1994); pyrrhotite 
(Dekkers and Schoonen, 1994; Janzen et al., 2000; Thomas et al., 2001); Realgar (Lengke and 
Tempel, 2003); and Sphalerite (Weisener et al., 2003). 

Data for the sulfide minerals were selected as follows: As2S3, amorphous, from Lengke 
and Tempel (2001); pyrite, from McKibben and Barnes (1986); and pyrrhotite, from Janzen et al. 
(2000).  The rate parameters were regressed using eqn. (11) or compiled directly from the 
references, and are summarized in Table 35. 
 
 
Table 35. Sulfide Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism  Base Mechanism 
 alog k bE cn dn  alog k bE en  alog k bE cn 
pyrite -7.52 56.9 -0.500 0.500  -4.55 56.9 0.500  -- -- -- 
fpyrrhotite -8.04 50.8 -0.597 0.355  -- -- --  -- -- -- 
gpyrrhotite -6.79 63.0 -0.090 0.356  -- -- --  -- -- -- 
hAs2S3 -- -- -- --  -9.83 8.7 0.180  -17.39 8.7 -1.208 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
d. Reaction order n with respect to Fe+++. 
e. Reaction order n with respect to O2. 
f.  Monoclinic pyrrhotite. 
g. Hexagonal pyrrhotite. 
h. Amorphous As2S3. 
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3.11 Phosphates 

Dissolution rate data for apatite from several references were evaluated (Chien, 1977; 
Chien et al., 1980; Christoffersen et al., 1978; Fawzi et al., 1978; Fox et al., 1978; Guidry and 
Mackenzie, 2003; Hull and Hull, 1987; Valsami-Jones et al., 1998).  Data for hydroxyapatite and 
fluorapaite were selected from Fawzi et al. (1978) and Valsami-Jones et al. (1998).  The rate 
parameters were regressed using eqn. (11), and are summarized in Table 36.  For the neutral 
mechanism, a “cut-off” rate constant at 25 °C was calculated so that rates do not decrease with 
pH increasing above 7, and the activation energy is set equal to the acidic mechanism.  The 
uncertainty in activation energy may be quite large because it was computed from dissolution 
rates obtained from experiments with minimal temperature difference, 25 and 28 °C (Fawzi et 
al., 1978); these data were for experiments with hydroxyapatite, and the tabulated activation 
energy for fluorapatite dissolution is taken equal to that of hydroxyapatite. 
 
 
Table 36. Phosphate Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 
 alog k bE cn  alog k bE 
hydroxyapatite -4.29 250.0 0.171  -6.00 250.0 
fluorapatite -3.73 250.0 0.613  -8.00 250.0 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
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3.12 Halides 

Dissolution rate data for halite (Alkattan et al., 1997a; Alkattan et al., 1997b) and fluorite 
(Bosbach et al., 1995; Christoffersen et al., 1988; Gardner and Nancollas, 1976; Hamza et al., 
1987; Hamza and Hamdona, 1991; Zhang and Nancollas, 1990) were evaluated.  Data for halite 
were selected from Alkattan (1997a), and the rate parameters were regressed using eqn. (11); the 
far from equilibrium rate constant was calculated from data at Ω = 0.90 to 0.94 and the apparent 
rate constant.  For fluorite, the rate constant at 25 °C in pure water was selected from Zhang and 
Nancollas (1990), where the far from equilibrium rate constant was calculated from data at Ω = 
0.40 and the apparent rate constant, and the activation energy was selected from Hamza and 
Hamdone (1991).  The rate parameters for halite and fluorite are summarized in Table 37. 

 
 

Table 37. Halide Mineral Dissolution Rate Parameters. 

 Acid Mechanism  Neutral Mechanism 
 alog k bE cn  alog k bE 
halite -- -- --  -0.21 7.4 
fluorite -7.14 73.0 1.000  -13.79 73.0 
a. Rate constant k computed from A and E, 25°C, pH = 0, mole m-2 s-1. 
b. Arrhenius activation energy E, kJ mole-1. 
c. Reaction order n with respect to H+. 
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4. CONCLUSIONS 

This work is intended as a preliminary starting point for the implementation of the 
kinetics of mineral dissolution and precipitation in aqueous fluids in reaction path modeling of 
water-rock-gas systems.  The list of cited references may be as useful as, or perhaps more useful 
than, the rate parameters compiled herein, as the references commonly provide information to 
further refine rate equations that have been implemented, particularly with regard to the use of 
adsorption isotherms to quantify the effects of dissolved constituents upon reaction rates.  The 
general rate equation and rate parameters were compiled specifically for the program 
GAMSPATH (Perkins et al., 1997), which simulates an infinitely well stirred batch reactor.  For 
the program GAMSPATH, the rate parameters compiled provide the ability to compute, to a first 
approximation, the minimum length of time required for a system to equilibrate. 

For most minerals, there is currently a high degree of uncertainty in experimentally 
determined dissolution and precipitation rates.  For many minerals, variation in composition, 
degree of cation disorder, degree of crystallinity, as well as the frequency and distribution of 
crystal defects, contribute to these uncertainties.  In many cases, the lack of data over a wide 
range of temperatures results in a large degree of uncertainty in the Arrhenius activation energy.  
Furthermore, the possible effects of many common dissolved species have not been quantified.  
It is clear that much experimental work remains to be done to determine the kinetics of mineral 
dissolution and precipitation under conditions that are encountered in natural systems. 
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